
Concern-Oriented Behaviour Modelling
with Sequence Diagrams and Protocol Models

Wisam Al Abed, Matthias Schöttle, Abir Ayed, Jörg Kienzle

School of Computer Science, McGill University
Montreal, QC H3A 0E9, Canada

{Wisam.Alabed,Matthias.Schoettle,Abir.Ayed}@mail.mcgill.ca,

Joerg.Kienzle@mcgill.ca

Abstract Concern-Oriented REuse (CORE) is a multi-view modelling
approach that builds on the disciplines of model-driven engineering, soft-
ware product lines and aspect-orientation to define broad units of reuse,
so called concerns. Concerns specify the essence of a design solution and
its different variations, if any, using multiple structural and behavioural
views, and expose the encapsulated functionality through a three-part
interface: a variation, a customization and a usage interface. Concerns
can reuse other concerns, and model composition techniques are used to
create complex models in which these concerns are intertwined. In such
a context, specifying the composition of the models is a non-trivial task,
in particular when it comes to specifying the composition of behavioural
models. This is the case for CORE message views, which define behaviour
using sequence diagrams. In this paper we describe how we added an ad-
ditional behavioural view to CORE – the state view – that specifies the
allowed invocation protocol of class instances. We discuss why Protocol
Modelling, a compositional modelling approach based on state diagrams,
is an appropriate notation to specify such a state view, and show how we
added support for protocol modelling to the CORE metamodel. Finally,
we demonstrate how to model using the new state views by means of an
example, and explain how state views can be exploited to model-check
the correctness of behavioural compositions.

1 Introduction

Model-Driven Engineering (MDE) [21] is a unified conceptual framework in
which software development is seen as a process of model production, refine-
ment and integration. Models are built representing different views of a software
system using different formalisms, i.e., modelling languages. The formalism is
chosen in such a way that the model concisely expresses the properties of the
system that are important at the current level of abstraction. During develop-
ment, high-level specification models are refined or combined with other models
to include more solution details, such as the chosen architecture, data struc-
tures, algorithms, and finally even platform and environment-specific execution
properties. The manipulation of models is achieved by means of model transfor-
mations. Model refinement and integration continues until a model (or code) is
produced that can be executed.

MDE, while successful in many areas, still faces important challenges in prac-
tise. One main challenge is model reuse [25]: typically, models for a system un-
der development are created from scratch, rather than reusing already existing
models. This makes modelling more cumbersome than coding, since most mod-
ern programming languages offer extensive libraries that facilitate code reuse.
Furthermore, models of complex applications tend to grow in size, to a point
where even individual views are not readily understood or analyzable anymore.
This is particularly true for behavioural models that are executable or used as
source models for code generation, since they need to specify the behaviour in
great detail.

Concern-Oriented REuse (CORE) is a multi-view modelling approach aimed
at addressing the reuse and scalability issues of model-driven engineering. CORE
extends MDE with best practices from research in both software product lines
and aspect-orientation to define broad units of reuse, so-called concerns. These
concerns specify the essence of a design solution and its different potential vari-
ations using multiple structural and behavioural views. The modelling notations
used within a concern offer aspect-oriented features that make it possible to sepa-
rate and modularize crosscutting properties and functionality. Currently, CORE
incorporates feature models, goal models, class diagrams, sequence diagrams,
and – thanks to the research described in this paper – protocol state machines,
all with aspect-oriented extensions.

Concerns can easily reuse other concerns thanks to their three-part interface
(a variation, a customization and a usage interface), thus creating concern hi-
erarchies with complex dependencies. Syntactic or semantic model composition
techniques [20] are used to flatten concern hierarchies and create complex models
in which the concerns are intertwined that can then be executed or from which
code is generated.

Specifying this composition is a non-trivial task, in particular when it comes
to specifying the composition of behaviour. Structural composition of class dia-
grams in CORE boils down to merging of model elements. For two classes, for
instance, this yields a new class that has the properties from both of the merged
classes. Experience shows that the symmetric merge operation is conceptually
easy to master by modellers.

Behavioural composition of sequence diagrams in CORE is asymmetric in na-
ture. One sequence diagram can invoke an operation that is defined by another
sequence diagram, which means that the weaver has to insert the behaviour of
the called operation into the sequence diagram that made the call. Furthermore,
aspect message views can modify the behaviour of a sequence diagram by adding
additional behaviour before and/or after the already existing sequence of inter-
actions. Understanding the resulting behaviour becomes tricky, in particular if
the different behavioural specifications are scattered in multiple models. Also,
as for all asymmetric approaches, the order of composition matters in the case
where several aspect models want to add behaviour at the same place.

The complexity of understanding aspect dependencies and interactions, un-
wanted or wanted, has been a subject of study for many years now [18], and

recognized as a major problem in aspect-oriented software development. This
paper presents how we integrated protocol modelling (PM) [15] into CORE to
allow the modeller to specify operation invocation protocols for class instances.
We present some important properties that make PM an adequate notation for
expressing state views in CORE design models, and show how we integrated
a restricted form of PM into the CORE metamodel. We then discuss how this
restricted PM can be used by a modeller to specify state views, and how it can
be exploited by our TouchCORE tool [2,1] to perform consistency checking of
behavioural specifications that cross model boundaries.

The remainder of the paper is structured as follows. Section 2 reviews some of
the most important concepts of CORE. Section 3 enumerates the requirements
that a modelling notation needs to fulfill in order to be useful in the context
of CORE. Section 4 shows how we introduced a restricted form of PM into the
CORE metamodel. Section 5 discusses how we envision modellers to use our
new state views within CORE by means of the AspectOPTIMA [10] case study.
Section 6 elaborates how the PM approach satisfies our requirements. Section 7
summarizes related work, and the last section draws some conclusions.

2 Background on CORE

In contrast to model-driven engineering’s focus on models, the main unit of mod-
ularization, abstraction, construction, and reasoning in concern-driven software
development (CCD) is the concern.

A concern is any domain of interest to a software engineer. It can (but does
not have to) be a crosscutting concern as advocated by aspect-oriented soft-
ware development. A concern is a unit of modularization that encapsulates a
set of models describing all properties of that concern required to sufficiently
understand and use the concern. Typically, the models within a concern span
multiple phases of software development and levels of abstraction. The models
are built using the most appropriate modelling formalisms to express the prop-
erties of the concern that are relevant at each level of abstraction. Consequently,
a concern is typically described by many modelling notations, which may be
object-oriented in nature, but typically also need to offer other language mecha-
nisms (e.g., aspect-oriented features) in order to properly handle the crosscutting
nature of certain properties encapsulated within a concern. Finally, a concern
also encapsulates all relevant variations/choices that are available/encapsulated
within a concern, together with guidance on how to choose among those varia-
tions.

The key concept of concern-orientation promoting modularity is the three-
part interface [3] that every concern must provide:

– The Variation Interface describes the available variations of the concern
and the impact of different variants on high-level goals, qualities, and non-
functional requirements. The variations of a concern are represented with a
feature model [7] (described in more detail in subsection 2.1) that specifies
the individual features a concern offers, as well as their dependencies. The

impact of choosing a feature on soft-goals and system qualities is specified
with goal models [6].

– The Customization Interface describes how a chosen variant can be adapted
to the needs of a specific application. Each variant of a concern is described as
generally as possible to maximize reusability. Therefore, some elements in the
concern are only partially specified and need to be related or complemented
with concrete modelling elements of the application that intends to reuse the
concern. The customization interface is hence used when a specific variant
of a reusable concern is composed with the application.

– The Usage Interface describes how the application can finally access the
structure and behaviour provided by the concern.

2.1 Designing a Concern

Building a concern is a non-trivial, time consuming task, typically done by or
in consultation with a domain expert; it requires a deep understanding of the
nature of the concern to be able to identify and specify all features of a concern.
In CORE, this is done with feature models (see subsection 2.1.1). Once identified,
each feature of a concern has to be realized, i.e., the structure and behaviour of
the functionality it encapsulates needs to be specified. In CORE, this is done with
Reusable Aspect Models (RAM) [12,9], an aspect-oriented multi-view modelling
notation based on UML class and sequence diagrams (see subsection 2.1.2).

2.1.1 Feature Model The features of a concern include all prominent or
distinctive user-visible aspects, qualities and characteristics related to the con-
cern. Once identified, the concern designer summarizes all relevant variations of
the functionality pertaining to a concern, as well as all extensions of the func-
tionality, with a feature model [7]. Feature models specify the relationships and
dependencies that exist between features effectively and express them visually
as a tree with different parent-child relationships (mandatory, optional, xor and
or) and cross-feature dependencies (requires and excludes) that are not limited
to just parent-child relationships.

Figure 1 shows the feature model of a low-level software design concern called
Association. It occurs very frequently in object-oriented designs that an object
of class A needs to be associated with other objects of class B. Implementing
associations with multiplicity 0..1 or 1 is easy, since it simply requires the class
A to store a reference to an instance of class B. Implementing an association where
the upper bound of the multiplicity is greater than 1, e.g., 0..*, can be done in
many ways, and it is the job of a designer to determine the most appropriate way.
Typically, the design has to introduce an intermediate collection data structure
that stores the instances of B and refer to it from within class A. Operations need
to be provided that add and remove instances of B from the collection contained
in the object of class A.

What kind of collection to use depends on the functional requirements of
the association. For example, an {ordered} association has to be designed with

Association

Unordered Key IndexedOrdered

HashMap DatabaseTreeSet HashSetArrayList LinkedList

Legend
mandatory optional

or xor (alternative)

Figure 1: Association Concern Feature Model

a collection that orders the elements it contains, e.g., a queue (FIFO), a stack
(LIFO), or a priority queue (sorted using some criteria). A qualified association
has to be designed with some sort of dictionary or map that allows the retrieval
of objects by means of a key. Furthermore, an abstract data structure may have
many different internal implementations. For example, a queue can be structured
internally as an array or a linked list, the choice of which affects the algorithms
for insertion, deletion, and iteration. This ultimately impacts the non-functional
properties of the application, e.g., memory usage and performance, which are
expressed by means of the impact model (see subsection 2.1.5).

2.1.2 Realizing Features A concern can encapsulate complex functionality;
however, this complexity is decomposed into several features that each mod-
ularize a coherent part of that functionality. The root feature of a concern,
for instance, encapsulates structural and behavioural properties that are always
present. Optional features modularize structure and behaviour that is only rel-
evant when that particular feature of the concern is chosen.

In CORE, a feature is realized by a structural view (class diagram) and one
or more message views (sequence diagrams). The class and sequence diagram
notation used are extended with aspect-oriented features as described in the
Reusable Aspect Models (RAM) approach [12,9]. This makes it possible for the
realization models of one feature to augment the structure and behaviour of the
realization models of their ancestor features.

Concretely, if feature A is the parent of feature B, then the model BReal that
realizes feature B extends the model AReal that realizes the feature A. Because B
is a sub-feature of A, the concern designer’s intent is to add additional structural
and/or behavioural model elements to AReal that provide additional, alternative
or complementary properties to what already exists in AReal. By default, BReal
has full visibility of all elements visible in AReal. As a result, BReal can use
the structure and behaviour provided by AReal when needed. Furthermore, any
model elements used in BReal that have the same name as an existing model
element in AReal are considered to be the same, i.e., their properties are going
to be merged by the TouchCORE tool using the weaving algorithms defined
in [9] to produce a “woven” model that realizes both features. This allows BReal
to augment the customization and usage interface of AReal with additional
structure and behaviour.

2.1.3 Structural View – Class Diagrams To realize a feature, the con-
cern designer specifies in the structural view the classes relevant to the feature,
together with their attributes and operations, as well as any associations among
classes. The notation used is UML class diagrams, with the additional possibility
of marking classes, attributes and operations as partial by prefixing their name
with a vertical bar: ’|’. Partial model elements are included in the concern’s
customization interface, and designate model elements that are general from the
point of view of the current concern, which means that they must be mapped to
application-specific model elements before the concern can be used.

Because a concern is split into features, the structural view of a feature is
of reasonable size (typically containing 1-6 classes with 1-10 public operations
each). As a result, the complexity of a concern is split into several models that
usually fit into the limited active working memory of a human [16]. This makes
the elaboration, understanding and evolution of the models involved in the re-
alization of the feature easy and less error prone [24] than if the entire concern
model had to be specified in one model.

structural view

1
mySeq

message view initializeAssociation

aspect Association.Ordered realizes Ordered
|Data

|Associated

0..*

+ create()
+ add(|Associated a)
+ add(int index, |Associated a)
+ remove(|Associated a)
+ remove(int index)
+ |Associated get(int index)
+ boolean contains(|Associated a)
+ Sequence<|Associated> getAssociated()

 int size
|Data

|Associated

~ create()
~ add(|Associated a)
~ add(int i, |Associated a)
~ remove(|Associated a)
~ remove(int i)
~ |Associated get(int index)
~ boolean contains(|Associated)
~ destroy()

int size
Sequence |Associated

Implementation:
Sequence:
any java.util.List

new:
|Data

create(..)

Pointcut Advice
new:
|Data

create(..)

mySeq:
Sequence

<|Associated>

mySeq := create()* *

message view |Data affected by initializeAssociation

message view add(|Associated) target: |Data
add(a)

mySeq:
Sequence<|Associated>add(a)

other message views omitted for space reasons

Figure 2: CORE-RAM Model realizing Ordered of the Association Concern

The top part of Fig. 2 shows the structural view of a CORE-RAM model
that realizes the Ordered feature of the Association concern shown in Fig. 1. The
structural view describes the structural design of an ordered association between
two classes with a multiplicity of 0..*. The structural view defines a partial class
|Data, which uses a Sequence to link an instance of |Data to many instances

of the partial class |Associated in an ordered way. The class Sequence refers
to a Java implementation of java.util.List.1

|Data and |Associated are partial classes, i.e., incomplete classes (high-
lighted by a vertical bar ’|’) that must be mapped to another class whenever
this feature is used within another concern. These classes are partial since at
this point it is not yet known what actual application classes will need to be
associated with each other. All partial classes (and operations) are part of the
customization interface of a CORE model: any model that wants to use the Or-
dered feature of the Association concern must map |Data and |Associated to
two of its own classes.

In CORE, there are four types of visibility modifiers for operations: public
(+), protected (#), private (-) and concern-private (~). All public operations
are part of the usage interface of a CORE model, i.e., they are the operations
that another model can invoke to trigger the behaviour realized by the feature.
Protected operations can only be invoked from within the same class or subclass,
private operations can only be invoked from within the same class, and concern-
private operations can be called only by classes included in the same concern.

2.1.4 Message View – Sequence Diagrams Message views describe the
behaviour of the feature being modelled. There is one message view for each
public operation defined by a class in the structural view. Each message view
describes the sequencing of message interchanges that occur between instances
of classes of the concern when providing the functionality offered by the public
operation.

In the Association<Ordered> model, the class |Data has eight public op-
erations. All these operations involve interactions with an instance of the class
Sequence. For space reasons, Fig. 2 only shows the message view for the construc-
tor of |Data (create) and one of the add operations. The add operation illus-
trates how the call is forwarded to the Sequence class. Because the behaviour of
the constructor of |Data is not known yet, it is advised using an aspect message
view to initialize the Sequence class. The advice of initializeAssociation
describes that after the behaviour of the specific constructor, the Sequence is
created and assigned to mySeq.

2.1.5 Impact Model After realizing all the features of a concern, the concern
designer has to specify the impact that the realization of each feature has on soft
goals and system qualities. In CORE, this is done with impact models, which
are based on goal modelling as defined by GRL [6]. For instance, the choice of
ArrayList might provide better access performance than LinkedList. However,
ArrayList uses more memory than LinkedList. Further details on how to define
impact models are provided in [3].

1 TouchCORE, the CORE tool, allows the reuse of existing classes provided by the
programming language or frameworks being used.

2.2 Reusing Concerns

Once a concern has been designed, the expert knowledge and solutions encap-
sulated within can be reused whenever possible. While designing a concern is
challenging, time consuming and requires in-depth domain expertise, reusing an
existing concern is simple, and involves three steps:

1. A concern user must first select the feature(s) with the best impact on rele-
vant soft-goals and system qualities from the variation interface of the con-
cern based on the provided impact analysis. Based on this configuration, the
TouchCORE tool then merges the models that realize the selected features to
yield a new model of the concern corresponding to the desired configuration.

2. Next, the concern user has to adapt the generated concern realization model
to the application context by mapping all customization interface elements,
i.e., the model elements designated by a ’|’ prefix, to application-specific
model elements.

3. Finally, the concern user can use the functionality provided by the selected
concern feature’s usage interface within his own application models. This
typically consists of instantiating classes provided by the concern, and in-
voking their public operations from within the application-specific message
views.

3 Requirements for Concern-Oriented Specification of
Invocation Protocols

Specifying complex behaviour of a concern by composing several partial be-
haviours described in multiple message views is a non-trivial and error-prone
task. Aspect message views can augment behaviour defined in other message
views to include additional control flow directives and operation invocations.
Furthermore, if several aspect message views are applied to the same base be-
haviour, the order in which the message views are applied usually changes the
resulting behaviour.

In order to help the concern designer in defining correct behavioural specifi-
cations that extend the behaviour of parent realization models and to help the
concern user to correctly invoke functionality provided by reused concerns, we
decided to introduce an additional behavioural view into CORE-RAM that al-
lows the concern designer to specify operation invocation protocols for the classes
encapsulated within a concern. Using those protocol models, model checkers can
verify that the behavioural specifications expressed in the sequence diagrams
within a concern as well as the behavioural specifications obtained by compos-
ing models of reused concerns with the application model are valid, i.e., they do
not violate any of the protocols defined for any of the features as well as for the
application. This makes it possible to detect unwanted and incorrect behaviour
resulting from feature and concern interactions and erroneous composition spec-
ifications.

In subsection 3.1 we list the requirements that a modelling notation needs to
fulfill in order to be useful in the context of concern-oriented modelling. Then,
in subsection 3.2 we briefly present the Protocol Modelling approach (PM), and
show how we adapted it to fit our needs. Finally, in subsection 3.3 we highlight
the key differences between protocol machines and state views.

3.1 Requirements for the Protocol Specification Notation

Based on experience gained from creating several software design concerns with
CORE-RAM, the notation for expressing protocols must have the following prop-
erties:

1. Expressiveness: In CORE-RAM, the structural view presents the classes
together with the operations they offer, and the message views present the
interaction between objects when one of the public operations is invoked.
This does not convey complete information on the order in which operations
can be invoked on object instances. The notation we are looking for should
support the specification of such invocation protocols, i.e., it has to be pos-
sible to state when an operation is allowed to be executed, and when it is
forbidden.

2. Conciseness: The notation should be capable of specifying invocation pro-
tocols of class instances in a straightforward and concise way. This require-
ment is important to reduce accidental complexity [26].

3. Diversity: The notation should not be similar to sequence diagrams. This
will force the modeller who is specifying the protocols to look at the design
concern from a different point of view from how they specified the behaviour
of the operations with sequence diagrams.

4. Modularity: To be useful in the context of concern-orientation, the mod-
elling notation needs to be able to modularize the protocol of classes that
belong to a feature of the concern. It should be possible to specify the pro-
tocols for the classes within a feature in isolation from the protocols of other
classes of the concern.

5. Composition: Since a modeller can elaborate a complex design concern by
composing multiple CORE-RAM feature realization models, the modelling
notation for specifying protocols must support composition. Whether a child
feature extends properties of parent features, or whether concerns reuse other
concerns and therefore customize the realization model of the reused concern
to their specific application, the protocols for object instances can change.
To illustrate the kind of protocol compositions that the notation must sup-
port, imagine the following example: Feature A is the parent of feature B in
concern R. The concern designer of R creates the realization model BReal
that realizes feature B and extends the model AReal that realizes the feature
A. The concern user of R selects A, and therefore customizes the model AReal
by mapping its customization interface to model elements in the application-
specific model App that he is building.
The composition operator(s) of the protocol notation must support:

(a) Adding New Operations: Both the concern user (in App) and the
concern designer (in BReal) might define new operations, which need to
be integrated by composition with the protocol of the classes in AReal.
In case of customization, the public protocol of classes in AReal need to
be integrated with the protocol of classes in App. In the case of model
extension, the complete protocol of AReal needs to be integrated with
the complete protocol of BReal.

(b) Adding Constraints: Both the concern user and the concern designer
might need to define additional constraints on the protocol of AReal. It
should therefore be possible to restrict the public or the complete pro-
tocol of AReal, respectively, by forbidding the execution of an operation
in certain cases.

(c) Coupling Protocols: A CORE-RAM model can depend on multiple
other models. For example, BReal can both extend AReal and also reuse
another concern C. In that case, it should be possible for the concern
designer of BReal to specify a coupling between the protocols of AReal
and C in the case where classes from AReal and C are mapped to the
same class in BReal.

6. Verification: The protocol modelling notation should be appropriate for:
(a) Verifying Internal Consistency of CORE-RAM Models: It should

be possible to verify that a concern designer is specifying the behaviour
provided by the CORE-RAM model that realizes a feature in a consistent
way, i.e., that there are no contradictions between the specified object
invocation protocols and the interactions between objects specified in
the message views.

(b) Verifying Usage Consistency for concern reuses: It should be possible
to verify that a concern user is calling the public operations provided
by the customized CORE-RAM model of a reused concern in the right
order. In other words, the notation should support the definition of a
public protocol.

(c) Verifying Increment Consistency for CORE-RAM models that ex-
tend parent realization models: It should be possible to verify that a
concern designer that extends a CORE-RAM model realizing a parent
feature is calling the operations provided by the parent in the right order.
In other words, the notation should support the definition of a complete
protocol that includes public, concern-private and private operations.

(d) Verifying Composition Consistency for woven CORE-RAM models:
To verify that the concern designer or concern user have specified the
behavioural compositions correctly, it should be possible to verify that all
scenarios specified within woven message views are acceptable according
to the combined protocol specifications of each model.

3.2 Specifying Protocols in a Concern-Oriented Way

Historically, protocols have been defined using state-based notations such as fi-
nite automata. State diagrams in general are also significantly different from se-
quence diagrams, which satisfies requirement 3. We therefore investigated several

state-based aspect-oriented approaches, including HiLa [27] and the framework
designed by Elrad et al. [4] (details on these approaches and their limitations
for expressing protocols are given in section 7). We ended up using the Protocol
Modelling notation (PM) [15], which was specifically designed for modelling pro-
tocols and comes with a formally defined composition operator. In CORE-RAM,
protocol models that specify invocation protocols are elaborated within separate
state views (SV), one for each class that is present in the structural view.

The PM approach is based on the concept of a “Protocol Machine”, a reusable
behavioural component of the model that can either ignore, accept or refuse
events that are presented to it. By associating a protocol machine with each
class in a CORE-RAM model, we can therefore specify invocation protocols
for all instances. This satisfies requirement 1. The PM approach is modular: a
protocol model of a system is composed of a set of protocol machines and each
machine describes a partial behaviour. This satisfies requirement 4. PM supports
a highly compositional style of modelling; the partial behaviours are composed
together to create the behaviour of the full system using a parallel composition
operator (P || Q) as defined by Hoare in the Communicating Sequential Processes
(CSP) approach [5]. CSP || composition has the advantage of being a well-
defined and understood concept, and it enables the modeller to perform local
reasoning on models. Furthermore, it gives the modeller the ability to deduce
the properties of the whole system from the knowledge of the behaviour of the
composed protocols [13].

state view |Data

NotEmptyEmpty
|Data

add
add

remove

Accessible

|DatagetAssociated

contains

get

[size == 0]

getSize

(a) Orthogonal State Machines

Empty

state view IData

|Data add
add

remove

[size == 0]

getAssociated contains

get

NotEmpty

getAssociated contains

getgetSize getSize

(b) Single State Machine

Figure 3: State View for the |Data Class in Ordered

Fig. 3a shows how we used PM to describe the protocol of the |Data class
of the Association<Ordered> CORE-RAM model shown in Fig. 2. The state
view of |Data has two state machines. The first one is describing the fact that
calling an add operation changes the state of a |Data object from Empty to
NotEmpty, and that remove operations should only be called after at least one
add was invoked. Also, when removing the last |Associated object from the
sequence of objects, the state of the |Data instance changes back to Empty. The
second state machine describes the protocol for the getter and query operations.
Since they do not alter the state of the object when called, there are no restric-
tions specified on their protocol. This is a great example on how PM supports

conciseness (requirement 2). Each state machine is simple: it only focuses on op-
eration invocations and how they alter the object’s logical state. To obtain the
complete protocol for |Data instances, the modeller can apply the CSP operator
mentally on the two state machines, which yields the composed state machine
shown in Fig. 3b. Notice that the state view with two state machines, even for a
simple class such as |Data, is easier to understand than the more cumbersome
composed state view.

3.3 Differences between PM and State Views

PM is a powerful technique that was designed for a slightly different purpose.
While our requirements are clearly focussed on documentation and verification,
the goals of PM include system interaction modelling, protocol execution simu-
lation, test and code generation. For that reason, we decided to adapt the main
ideas of PM within CORE-RAM, but to omit some of the advanced features
that we do not currently have a need for. In summary, the differences between
the original PM approach and how we are currently using it in CORE-RAM are:

– While PM models specify any general event interchange, we only focus on
modelling operation invocations.

– PM focusses on modelling interactions with a system, and therefore presents
all the state machines of a system together. Consequently, all events are
global (to the system being modelled), so they need to have unique names.
To obtain the complete interaction protocol of the system, all state machines
are composed with each other. In the case of a CORE-RAM model, only state
machines that are contained in the same state view are related to each other
(and logically composed with each other). Additional state view relationships
are created when classes from different aspects are mapped together, which
results in a logical composition of all the state machines that the respective
views contain. Because of that, the events in CORE-RAM are not global to
the whole system; they only need to be unique within all state views that are
describing protocols of the same class. For example, the state view of |Data
in Fig. 3 is composed of two state machines separated by a dashed line.
These state machines are related to each other since they are in the same
state view and CSP composition is logically applied to them. Conversely, the
state machines of the state view |Data and those of Sequence (not shown
in this paper) are independent, since they describe the behaviour of objects
that are instances of different classes.

– PM introduces a new type of state – the derived state – which replaces
transition guards. The main advantage of derived states is that they can
be reused by different state machines, unlike guards, which are attached to
transitions. Also, derived states offer the possibility to disallow events that
could lead the system into an undesired state. For example, a derived state
could be used to specify that a withdraw event should not be accepted on
a bank account object if it would lead to a negative balance. So far, we did
not need such expressive power in our case studies with CORE-RAM.

– Event abstraction in PM is realized by using special events called generic
events. This kind of event is used to abstract away the difference between
events that have the same effect to enable reuse of existing protocol ma-
chines in different contexts [14]. In the case of CORE-RAM, a similar kind
of protocol reuse is achieved when renaming an operation in an instantiation
directive.

4 Integrating PM into CORE-RAM

This section describes how we integrated our customized version of PM into
CORE by extending the CORE-RAM metamodel.

The structural view and message view in CORE-RAM are based on class
diagrams and sequence diagrams as defined by the Unified Modelling Language
(UML) [17]. The metamodel for these two CORE-RAM views is, however, con-
siderably simplified compared to the UML metamodel, for instance, [22] describes
how this was achieved for message views. Following the same idea, we studied
the metamodel for PM and looked at the UML metamodel for state diagrams
and how it is integrated with UML class and sequence diagrams. Based on the
integration strategy outlined in [23], we then defined a simplified metamodel for
CORE-RAM state views as presented in the following subsections.

4.1 Current Metamodel of CORE

Before discussing the state view metamodel, an overview of the current meta-
model of CORE-RAM is presented so that the reader can understand what
existing model elements the state view metamodel can reuse/reference.
Overview

The unit of modelling in CORE is a concern. COREConcerns contain at
least two COREModels, a feature model and an impact model. The feature and
impact model part of the CORE metamodel, however, is not shown here for
space reasons. For this paper, the most important model is the RAMAspect,
which contains all other model elements that realize a feature directly or in-
directly (see Fig. 4). An aspect is a CORENamedElement that has beside its
StructuralView and the AbstractMessageViews many Instantiations. An Instan-
tiation describes a dependency on some other aspect (which can either be a cus-
tomization, if the instantiation is part of a COREModelReuse, or an extension,
if the aspect extends an aspect that realizes a parent feature. The instantia-
tion contains COREMappings, that describe which element from the external
aspect is mapped to an element in the current aspect. ClassifierMapping and
OperationMapping describe mappings for classes and operations, respectively.
Structural View

The StructuralView represents the class diagram and its basic structure, and
its metamodel is shown in Fig. 5. This view contains a list of Classifier and
Association. Classifier is a Type, i.e., an abstract class that has a name and
contains a list of operations. An Operation has a name, a return type, may have

RAMAspect

toElement
1

StructuralView ClassifierMapping

Instantiation
- type: InstantiationType

structuralView 1 mappings 0..*

instantiations
0..*

externalAspect

OperationMapping 0..*0..*
operationMappings

CORENamedElement
- name: String

AbstractMessageView
messageViews 0..*

<<enumeration>>
InstantiationType

- Depends
- Extends

COREMapping
T

fromElement
1

<<bind T>> Classifier <<bind T>> Operation

COREConcern COREModelmodels
2..*

COREModelReuse

COREBinding

CORECompositionSpecification

modelReuses 0..*

compositions
0..*

concern1

1

Figure 4: Overview of the CORE-RAM Metamodel

one or more parameters, and is described by four properties: abstract, partial,
static and visibility. A Parameter has a type and a name. Class inherits from
Classifier, has a list of attributes, and is described by two properties: abstract and
partial. Classifier, Operation and Parameter are all MappableElements, meaning
that they can be mapped when customizing or extending another aspect.

StructuralViewClassifier

Parameter

Operation
- abstract: boolean
- partial: boolean
- static: boolean
- visibility: Visibility

operations 0..*

classes

0..*

Class
- partial: boolean
- abstract: boolean Attribute

NamedElement

attributes
0..*

Association
associations

1..*
assocation 1

Type

public
private
protected
package

<<enumeration>>
Visibility

type 1

parameters

0..*

returnType 1

1
type

MappableElement

type
1

superTypes 0..*

Figure 5: Structural View Metamodel

Message View
The MessageView represents the sequence diagram and an excerpt of its

general structure is shown in Fig. 6. The sequence diagrams used in CORE-
RAM, unlike UML sequence diagrams, describe only interchanges of messages
in the form of operation calls. A RAMAspect can contain more than one Mes-
sageView. The latter is specified for a specific Operation (coming from the struc-
tural view) and contains the specification of the operation’s behaviour. However
this is not mandatory, because partial operations don’t specify behaviour. Inter-
action describes the actual behaviour in the form of operation invocations. For

this purpose it contains, besides other entities, at least one Message. One of the
properties of a Message is its return value, and this information is represented
in the form of a ValueSpecification. The latter was inspired from the UML Val-
ueSpecification which is “an abstract metaclass used to identify a value or values
in a model. It may reference an instance or it may be an expression denoting an
instance or instances when evaluated” [17].

RAMAspect NamedElement
- name: StringInteraction

Operation

signature 1

specifies
1

specification 0..1

MessageView

Message
- selfMessage: Boolean

messages 1..*

ValueSpecification returns
0..1

AbstractMessageView

messageViews 0..*

Figure 6: Simplified Metamodel of Message View

4.2 State View Metamodel based on PM

The CORE-RAM state view metamodel presented in Fig. 7 supports the sim-
plified PM approach as described in section 3. Three entities from the existing
CORE-RAM metamodel were reused in the state view metamodel: Classifier and
Operation from the structural view metamodel, and ValueSpecification from the
message view metamodel.

A RAMAspect can now have several StateViews, one StateView for each
Classifier in the StructuralView. Because state views are mainly used for docu-
mentation and verification purpose, we do not make them mandatory. Hence, an
aspect can have zero StateViews (which also makes the new metamodel back-
ward compatible with the old one). Besides, partial classes sometimes do not have
operations, thus a protocol cannot be defined for them. A StateView knows for
which Classifier it specifies a protocol for, and it contains a set of StateMachines.
A StateMachine has at least one state, exactly one start state and at least one
transition.

A StateMachine is the entity that defines the reusable protocol component
of the model, which can be composed with other StateMachines using the CSP
|| operator. This entity is composed of a set of states, one of which is the start
state, and a set of transitions.

A State represents a logical state of the object for which we are defining
the protocol. A State has a name, a set of outgoing Transitions, i.e., allowed
operation calls from this state, and a set of incoming Transitions, i.e., operation
calls that led the object to be in this State.

A Transition connects two states: startState designates the state in which
the object must be to accept an operation call, and endState is the new state of
the object after the call has been made. endState and startSate can refer to the

same state, since some operation calls, e.g. getters, do not alter the state of the
object. Since in RAM we are only interested in operation call events, a Transition
has a signature of type Operation, i.e., it stands for calls to that operation only.
Moreover, a Transition has at most one guard, which is a condition that has to
evaluate to true for the protocol to accept a call to the transition’s operation.
Guard is of type ValueSpecification, a component that was borrowed from the
MessageView metamodel, which in turn was inspired from the UML metamodel.

RAMAspect NamedElement
- name: String

StateView

Operation

stateViews 0..*

Classifierspecifies
1

operations 0..*

StateMachine
stateMachines 1..*

State Transition

states 1..* transitions 1..*start1

signature
1

startState 1 outgoing 0..*
incoming

0..*
endState
1 ValueSpecificationguard

0..1

Figure 7: State View Metamodel

5 AspectOptima

AspectOptima [11,10] is an aspect-oriented framework providing customizable
transaction support to applications. The current AspectJ implementation of As-
pectOptima consists of 42 aspects that modularize and implement critical trans-
action system features in a reusable way. The aspects can be combined in differ-
ent ways to create different implementations of transaction models, concurrency
control and recovery strategies.

To demonstrate the effectiveness of the new state views, we elaborated a
concern-oriented design of parts of the AspectOptima framework. So far, we
modelled 5 essential features of the Transaction concern: ExecutionContext, the
root feature, and the optional features Tracing, OutcomeAware, Checkpointing
and Recovering. The feature model is shown on the left side of Fig. 8. Each
of the features has been realized in one CORE-RAM model. The dependencies
between the realization models are depicted on the right side of Fig. 8. They all
directly or indirectly extend the base feature realization model ExecutionContext.
Also, some of them reuse other concerns, such as Traceable, Checkpointable, and
Association. Indirectly, the Copyable and AccessClassification concerns are also
reused.

For space reasons we can not present the complete CORE-RAM models in
this paper. The interested reader can download the complete models together
with our tool from [1].

Recovering

CheckpointingTracing

Association Copyable

Outcome
Aware

ExecutionContext

Tracing

Legend
extension increment
customization increment

ExecutionContext

OutcomeAware
Checkpointing

Recovering

Traceable

AccessClassification

Checkpointable

CheckpointableTraceableAssociation

Legend
or choice

concern reuse

{Traceable}{Ordered,
ArrayList} {Checkpointable}

Figure 8: Feature Model (left) and CORE-RAM Realization Models with depen-
dencies (right) of AspectOptima

The base feature is called ExecutionContext, and its realization model is
shown in Fig. 9. The main idea of ExecutionContext is that it allows instances of
the class |Participant to enter what is called a Context – an abstraction of an
area of computation. When inside, the participant is associated with the context
until it leaves the context again. The |Participant class provides operations
for entering and leaving, and querying the current context.

structural view

0..1

myContext

aspect Transaction.ExecutionContext realizes ExecutionContext

+ |Participant getCurrent()
+ createAndEnterContext()
+ Context getContext()
~ setContext(Context c)
+ enterContext(Context c)
+ leaveContext()

|Participant

 0..1
myParticipant

|Participant

~ Context create()
~ addParticipant(|Participant)
~ removeParticipant(|Participant)
~ contextCompleted()
~ destroy()

Context

message view contextCompleted

message view createAndEnterContext
caller: Caller target:|Participant

myContext := create()

enterContext(myContext)

createAndEnterContext()

myContext: Context

message view enterContext caller: Caller target: |Participant c: Context

enterContext(c)
addParticipant(target)

setContext(c)

message view leaveContext caller: Caller target: |Participant myContext: Context
leaveContext()

removeParticipant(target)

setContext(null)

contextCompleted()

message view setContext is Getter<myContext>

Figure 9: ExecutionContext CORE-RAM Model

An execution context on its own is not very useful. This is why the sub-
features of ExecutionContext are related to it with an or dependency. At least
one of the features must be chosen for an execution context to be of use. Tracing
is one of those sub-features, and its structural view is presented in Fig. 10.

structural view
aspect Tracing extends ExecutionContext reuses Traceable, Association<Ordered>

+ * |tracedMethod<AccessKind>(..)

|Traced

|Participant
|Traced

|tracedMethod<AccessKind>
+ |Participant getCurrent()
+ Context getContext()
+ createAndEnterContext()
+ leaveContext()

|Participant

~ Context Context()
+ boolean wasAccessed(|Traced)
+ boolean wasModified(|Traced)
+ Set<|Traced> getAccessed()
+ List<Trace> getTraces()
+ removeTraces(Set<|Traced>)
+ addTrace(Trace trace)
+ removeTrace(Trace trace)
+ getNbTraces()

Context

Concern Reuses:
Traceable:

Association<Ordered>

|Traceable → |Traced; |traceableMethod → |tracedMethod; Trace → Trace; AccessKind →
AccessKind
|Data → Context; |Associated → Trace; getAssociated → getTraces; add → addTrace; remove
→removeTrace; getSize → getNbTraces, mySeq → myTraces

Read
Write
Update

<<enumeration>>
AccessKind

Trace

Figure 10: Structural View of the Tracing CORE-RAM Realization Model

Tracing depends on several other models to implement its behaviour. First,
it is an extension of the ExecutionContext model, which already defines the
classes Context and |Participant together with the behaviour that allows a
participant to enter and leave a context. Tracing adds additional behaviour that
ensures that while inside a context, all operation invocations on instances of the
class |Traced are recorded with the context. Such a feature can be useful for
debugging or logging purposes. To achieve the desired behaviour, Tracing reuses
the Traceable concern to provide the behaviour of creating a trace for a method
invocation, and also Association<Ordered> (see Fig. 2) to associate an ordered
list of traces with the context.

In subsection 3.1 we listed several consistency verifications that we would
like to be able to conduct using our new state views. The following subsections
illustrate some of them.

5.1 State Views for Public Operations

One requirement was verifying usage consistency , meaning that it should be
possible to use the state view to ensure that a model user specifies behaviour in
the sequence diagrams that call the operations of the customized aspect in the
right order. Since a model user can only call public operations of the model it is
customizing, it is in this case enough to define a state view that only specifies
the protocol for the public operations.

For instance, Tracing customizes the Association<Ordered> model to enable
a Context instance to store a list of Traces. In this case the concern designer

of Tracing, which is the concern user of Association needs to understand the
public behaviour of the |Data class to be able to use it correctly. All invocations
of the operations on the |Data class must respect the public protocol as spec-
ified in Fig. 3. For example, Fig. 11 shows the message view of the operation
removeTraces. This operation, given a set of Traced objects, removes all the
traces that belong to these objects from the context. The operations used by this
message view, getTraces and removeTrace, are added to the Context class be-
cause the reuse instantiation directive maps |Data to Context, getAssociation
to getTraces and remove to removeTrace (see reuse compartment in Fig. 10).
Since there is no restriction for calling getAssociated before remove according
to the public state view of Association<Ordered> (Fig. 3), the message view
of removeTraces is using the operations of |Data class correctly. The CORE
modelling tool should detect protocol violations and signal them to the concern
users.

message view removeTraces
removeTraces(t)

target := getTarget()

target: Context

loop [tr within traces]

opt [remove]

tr: Trace

remove := contains(target)

t: Set<|Traced>traces := getTraces()

removeTrace(tr)

Figure 11: removeTraces Message View

Available

Context
getTraces

getAccessed

wasAccessed

TraceAvailableNoTraces

addTrace
addTrace

removeTraces

Context

wasModifiedgetNbTraces

[size == 0]
state view Context

Figure 12: Public SV Tracing.Context

Applying the same idea to the next level, the concern designer should specify
a public state view for Tracing that documents the correct use of the concern
to the concern users and allows the modelling tool to verify its correct use. To
model the public state view of the class Context, a model designer needs to
consider the public operations of this class and determine for each operation the
possible constraints for calling it. In our case, the major constraint for Context
is that the operation removeTraces can not be called unless a trace was added
previously through addTrace. Fig. 12 describes a public state view for Context
that expresses this constraint.

5.2 Internal State Views

To be able to do a similar verification for model increments, a more elaborate
“internal” state view needs to be defined that describes the invocation protocol
detailing not only the public, but also the internal operation invocations that
are acceptable during the life time of an object. This internal state view should
describe how non-public operation invocations relate to public ones and to each
other. This makes it possible to verify increment consistency and composition
consistency.

state view Context

Idle Active

Context

contextCompleted

addParticipant

removeParticipant

Completed

Figure 13: Internal SV EC.Context

For example, Fig. 13 shows the state view of the class Context of the Exe-
cutionContext realization model (see structural view in Fig. 9). It states a par-
ticipant can be added to a context and removed again multiple times in a row,
if desired. However, once contextCompleted is invoked, no more operation calls
are allowed on a context instance. The Context state view is an internal state
view, since this class does not have any public operations. Because Tracing ex-
tends ExecutionContext, the Context class in Tracing is mapped to the Context
class in ExecutionContext. The model designer of Tracing should hence specify
any protocol restrictions that should be defined between the operations added
to Context by Tracing and the operations that come from ExecutionContext.

One constraint that a Context object in Tracing must not violate is the fact
that the operation addTrace should only be called when a participant entered

Idle Active
Context

addParticipant

removeParticipant

addTracestate view Context

Figure 14: Internal SV of Tracing.Context

the context, i.e., when the context is in the state Active after addParticipant
is called. Fig. 14 shows the state machine that expresses such a behavioural
constraint.

Composing the public and the internal state views using CSP composition
results in the state view shown in Fig. 15. The composed view can subsequently
be used to verify the consistency of message views that were specified in models
that reuse or extend Tracing.2

Idle_NoTraces Active_NoTraces

Context
contextCompleted addParticipant

removeParticipant
Completed_NoTraces

addTrace

Active_TraceAvailable

addTrace

removeTraces

Idle_TraceAvailable
removeParticipant

Completed_TracesAvailable
contextCompleted

removeTracesremoveTraces

addParticipant

removeTraceremoveTraceremoveTrace

[size == 0] [size == 0] [size == 0]

state view Context

Figure 15: Composed SV of Context with features ExecutionContext and Tracing

6 Discussion

This subsection discusses how our new state views satisfy the requirements we
detailed in subsection 3.1.

Expressiveness and Diversity: The structural view in a CORE-RAM
model specifies the classes that a feature defines and what functionalities they
offer. The message views show how instances of these classes interact with each
other and with objects of other concerns to achieve this functionality. They also
show for these scenarios in what sequence the operations of an object are called.
For example, the removeTraces message view (Fig. 11) presents an overview of

2 For simplicity and readability reasons, the state machine with the getters and query
operations from Association<Ordered> were not added to Fig. 15. To create the
actual woven model it suffices to add to each of the depicted states all self-transitions
of the state Available from the state view in Association<Ordered>.

the interactions between Context, Trace and Set<|Traced> objects when the
removeTraces(Set<|Traced>) operation is called, and shows the scenario where
getTraces is called before removeTrace(Trace). From a diversity perspective,
the state views of Context (Fig. 12 and 14) complement the message views
by giving information about how individual objects are to be used, i.e., the
order in which an object’s operations should be called, from a state perspective.
For example, the fact that addTrace should be called after addParticipant is
invoked is clearly expressed as a constraint in the Context state view in Fig. 14.
We have so far not encountered a situation in which it was not possible to express
a protocol using our new state views.

Conciseness: Measuring conciseness of a modelling notation objectively is
difficult [19], and we therefore discuss conciseness of the protocol modelling nota-
tion only informally. The protocol of the objects can be concisely described using
public and private state views. Woven state views that combine the protocol of
several models can be generated on demand. To further increase conciseness, we
made it optional to specify a protocol for operations that have no effect on the
conceptual state of an object. In other words, if no transition is defined for an
operation we assume that there is no restriction on its use. Finally, we added
generic events to increase conciseness of state views, which can be used to group
operations when operations affect the state of an object in the same way. For
example, the getters and query operations in Context can be replaced by one
event that can be called getters_queries as follows: getters_queries = {wasAc-
cessed OR getAccessed OR getTraces OR wasModified OR getNbTraces}. As a
result, only one transition needs to be shown in the state view, where otherwise
five transitions with the same source and target states would have to be shown.

Modularity: CSP || composition allows the concern designer to specify the
state views for each feature within a concern independently, and compose them
together to form the complete description of the protocol of a class. Likewise,
protocols of classes within a concern are modelled independently, and the con-
cern user can specify how to combine the protocols of the concern classes with
his application classes when customizing the model during the reuse process.
For example, the Tracing feature was modelled separately of the Association
concern, i.e., the protocols for Context and |Data are specified separately, and
combined by the concern user by mapping |Data to Context. Modularity can
even be exploited within a CORE-RAM model, since the concern designer can
specify the protocol of a class using multiple state machines if he judges that
using one state machine will be too complicated or cumbersome. For example,
the getters and query operations of the class Context in Tracing were modelled
in a separate state machine in the public state view to increase readability (see
Fig. 12).

Composition: The CSP || composition operator offers a straightforward
way to support adding of new operations, adding of constraints and coupling of
protocols.

– Adding new operations: This kind of transformation is easily expressed
by adding a new state machine that integrates the new operation into the

existing protocol. For example, Tracing.Context is using the operations of
Association<Ordered>.|Data to manage the list of Traces, and additionally
defines a new operation removeTraces. This operation affects the conceptual
state of |Data, and therefore needs to be integrated in the protocol defined
for |Data. For this reason, a state machine was defined (Fig. 12) to clarify
the relationship between the behaviour of |Data and the new added oper-
ation. Other operations were added, i.e., wasAccessed, wasModified and
getAccessed, but since they do not affect the state of a |Data object they
were added to the queries state machine. Notice that Context of Tracing
is extending the behaviour of Context coming from ExecutionContext by
adding all the operations coming from |Data and all the newly defined op-
erations. To determine the complete protocol of the new, composed Context
object, the state views of the three classes, i.e., ExecutionContext.Context,
Tracing.Context and Association<Ordered>.|Data are composed.

– Adding constraints: CSP || composition works by synchronizing state ma-
chines on events that are common in the alphabets of these entities. Reg-
ulation of the behaviour of an object by restricting operations is possible
due to the ability of a composed state machine (M1 || M2) to refuse an
event if M1 or M2 can not process this event in the current state. For in-
stance, the feature Recovering, whose structural view is not shown here for
space reasons, needs to change the protocol of Context defined in Execution-
Context. In EC.Context, a participant can enter a context, leave it, enter
it again, and so on, as shown in Fig. 13. In a recovering context, once a
participant is added, it has to set the outcome of the context before leav-
ing. Furthermore, once this is done, no participants can be added anymore.
Fig. 16 shows the protocol defined by Recovering, which is composed with the
state views of ExecutionContext, OutcomeAware, Checkpointing and Trac-
ing. Once the Context is created and addParticipant, setOutcome and
removeParticipant operations are invoked, the context object will be in
the state Idle in the machine of Fig. 13, and ParticipantRemoved in the
machine of Fig. 16. According to the rules of PM, it is not allowed for
addParticipant to be called again on the object. The machine in Execution-
Context allows processing addParticipant, but the machine of Recovering
has the operation in its events but it does not allow processing from the
state ParticipantRemoved. As a result, addParticipant is rejected by the
composition. Only contextCompleted is allowed by the composed protocol.

– Coupling Protocols: Orchestrating the behaviour of the concerns that a
model is extending and depending on is done simply by specifying the com-
mon behaviour in a separate state machine. For example, in Tracing, the
class Context is mapped on the one hand to the class Context in Execution-
Context and on the other hand to the class |Data of Association<Ordered>.
The behaviour of the object |Data is restricted by the behaviour of the object
Context of the ExecutionContext concern as follows: adding traces should
be done only when the Context is active, meaning the operation addTrace
(coming from add in Association<Ordered>) should only be invoked after

state view Context

Idle

Context

contextCompleted

addParticipant

removeParticipant

Completed ParticipantRemoved
contextCompleted

restoreCheckpoints discardCheckpoints

Undecided

 setOutcome

Decided

CheckpointAndAdd

Figure 16: Adding Constraints Example

the invocation of addParticipant and before that of removeParticipant.
The internal state view of Context shown in Fig. 14 presents the state ma-
chine needed to specify such an orchestration.
Sometimes orchestrating the behaviour of multiple objects can be tricky.
Fig. 17 shows the design of a concern called Checkpointable. This concern
can be used to add fault tolerance to a software application: it provides the
functionality to create snapshots of the state of objects and restore the states
in case of a failure. The class |Checkpointable represents the object that
contains the state that needs to be recoverable and Checkpoint is the class
responsible for handling the process. The Checkpoint needs to keep two
lists of objects: the first contains references to the original “checkpointed”
objects and the second contains the copies of the original objects at a spe-
cific moment of their life cycle. Whenever an object is “checkpointed”, it is
added to the first list and its copy is added to the second list. Therefore,
Checkpointable needs the functionality offered by Association<Ordered> to
manage these lists twice, and the protocols of the two lists need to be syn-
chronized.
Fig. 17 shows the state view of Checkpoint. Adding a backup copy should
always follow adding a checkpointable, and the same goes for removing. The
behaviour of the two |Data objects needs to be orchestrated, and this is de-
scribed by the bottom left state machine. The operation checkpointAndAdd
is the public operation responsible for creating the copy and adding both
the object and its copy to the lists. Calling this operation includes calling
addCheckpointable and addBackupCopy,3 which means that, according to
the state view of |Data, removeCheckpointable and removeBackupCopy
can be called at this point.

Verification: Section 5 discussed in detail how the CORE state views can
be used to verify internal consistency, usage consistency, increment consistency
and composition consistency.

3
addCheckpointable and addBackupCopy are the same operation add of class |Data

as it is shown in the instantiation compartment of the Fig. 17.

structural view
aspect Checkpointable.Checkpointable reuses Association<Ordered>, Copyable

+ Checkpoint Checkpoint()
~ Set<|Checkpointable> getCheckpointables()
+ checkpointAndAdd(|Checkpointable c)
+ restoreCheckpoint()
+ discardCheckpoint()

Checkpoint
|Checkpointable

|Checkpointable

|Copyable → |Checkpointable
|Data → |Checkpoint; |Associated → |Checkpointable; getAssociated → getCheckpointables;
add → addCheckpointable; get → getCheckpointable; remove → removeCheckpointable;
contains → containsCheckpointable;
|Data → |Checkpoint; |Associated → |Checkpointable; getAssociated → getBackupCopies;
add → addBackupCopy; get → getBackupCopy; remove → removeBackupCopy ; contains →
containsBackupCopy;

Concern Reuses:
Copyable:
Association<Ordered>:

Association<Ordered>:

state view Checkpoint

Empty
Checkpoint

checkpointAndAdd

discardCheckpoint

restoreCheckpoint

checkpointAndAdd
CheckpointExist

Checkpoint A1 A2
addCheckpointable

addBackupCopy

checkpointAndAdd
restoreCheckpoint

discardCheckpoint

A3

 removeCheckpointableremoveBackupCopy

Accessible

Checkpoint

gettersQueries

gettersQueries = {getCheckpointable OR
getBackupCopy OR getCheckpointables OR
getBackupCopies OR containsCheckpointable OR
containsBackupCopy}

Figure 17: CORE-RAM Model of Checkpointable

7 Related Work

State transition modelling is an effective concept to capture software systems be-
haviour and protocols. In this section we describe some approaches that applied
aspect-oriented modelling techniques in the context of state transition modelling.

The UML Superstructure document [17] describes several concepts for de-
signing object-oriented systems. This modelling language provides different views
to capture the static and dynamic behaviour of a software system. UML class
diagrams represent the artifact used to model and describe the structural view
of objects. This view is complemented by a state transition modelling artifact
inspired from David Harel’s statecharts. The document defines a State Machine
Package where two kinds of state machines are described: Behaviour State Ma-
chines and Protocol State Machines.

Behaviour State Machines are used to specify discrete behaviour of a part
of a designed system through finite state transitions. It can be attached to a
“behavioured classifier” which is called its context. The latter defines which at-
tributes and operations are defined for this state machine. State machines can
have orthogonal regions.

Protocol State Machine is a specialization of Behaviour State Machine. It
expresses the usage protocol or lifecycle of a classifier. It specifies the allowed
call sequences on the classifier’s operations.

In UML, a state machine can be extended, i.e., regions, vertices and transi-
tions can be added and redefined. A simple state can be redefined to a composite
state and a composite state can be extended by extending its regions or adding
new ones. State machine extension was introduced following the example of class
specialization. Unlike CORE-RAM, where the general and the specialized state
machines can be composed together, the relationship between states that ex-
tend other states in UML is not clear. There is no explicit composition defined
between state machines belonging to different classifiers, neither is event abstrac-
tion or event reinterpretation. Moreover, there is no tool, to our knowledge, that
supports state machine inheritance.

The approach by Mahoney et al. [4] extends Harel’s statecharts to create
reusable orthogonal abstract statecharts. In order to be able to take advantage of
existing CASE tools, their methodology uses UML semantics without adding any
major extensions. The approach performs implicit weaving of statecharts based
on orthogonality and event propagation. This makes it possible to adapt existing
behaviour by adding aspects orthogonally, thus extending the model without
impacting any of the other orthogonal regions. The approach also defines design
guidelines that, when followed, enable traceability of crosscutting requirements
from the design to code.

The main drawback of the approach that was noticed by the authors was
the tight coupling between the core and the aspect statechart due to the explicit
event propagation performed by the developer. To avoid such coupling, the au-
thors introduced the concept of event reinterpretation, i.e., high-level declara-
tions allowing an event in one statechart to be treated as a completely different
event in another statechart.

A Java framework was implemented as a proof of concept that permits the
translation of a statechart design into skeleton code for a class. However, the
authors do not provide an integrated and concrete model view where aspects
would already be woven into base classes.

Zhang et al. [27] propose the High-Level Aspects for UML State Machines
(HiLA) approach, in which they significantly extend UML state machines with
aspect-oriented modelling techniques. They use state machines to specify be-
haviour of base machines and aspect machines, which can be parameterized
using UML template parameters similar to what is done during CORE-RAM
customization. They provide several asymmetric pointcut-advice composition
mechanisms that enable aspects to disallow and restrict transitions, describe mu-
tual exclusion between two states in orthogonal regions and coordinate multiple
state machines. This approach, while powerful for specifying detailed behavioural
designs, is not adequate for our needs because of the complex composition se-
mantics of the different composition operators.

8 Conclusion

In concern-driven software development, concerns are modelled separately, and
model composition is used to create complex models in which these concerns are
tightly coupled. In such a context, specifying the composition of the models is
a non-trivial task, in particular when it comes to specifying the composition of
behavioural models.

In this paper, we provided insight on the benefits that modelling of invoca-
tion protocols can have when used in combination with behavioural specifications
expressed using sequence diagrams. Concretely, we showed how we applied this
technique to augment the CORE approach, which expresses the structure of
software design concerns within structural views based on class diagrams and
the behaviour of software design concerns using sequence diagrams, with addi-
tional state views that describe invocation protocols. We detailed why Protocol
Modelling, a compositional modelling approach based on state diagrams, is an
ideal notation to specify such a protocol view, and show how we added support
for protocol modelling to the CORE metamodel and the TouchCORE tool [1].
We explained that the new state views can be used to assist both the concern
designer as well as the concern user in the model composition specification task.
We outlined how the protocol view can be exploited to verify the correctness of
compositions.

To demonstrate the effectiveness of our approach and to analyze its strengths
and limits, we started the concern-oriented design of the AspectOptima case
study. The paper partially presented some of the features of the Transaction
concern. The complete models of the Transaction concern that includes Exe-
cutionContext, OutcomeAware, Tracing, Checkpointing and Recovering can be
downloaded together with our TouchCORE tool [1]. In the near future, we are
planning to complete the design of the AspectOptima case study to include
the remaining features needed for basic transaction support with optimistic and
pessimistic concurrency control: Nested, 2-Phase-Locking, Deferring and Vali-
dating. Finally, to fully support Open Multithreaded Transactions [8], we also
need to add Collaborative, EntrySynchronizing, ExistSynchronizing, SpawnSup-
porting, Closable and OutcomeVoting.

References

1. TouchCORE Tool. http://touchcore.cs.mcgill.ca.
2. Al Abed, W., Bonnet, V., Schöttle, M., Alam, O., and Kienzle, J.

TouchRAM: A multitouch-enabled tool for aspect-oriented software design. In 5th
International Conference on Software Language Engineering - SLE 2012 (October
2012), no. 7745 in LNCS, Springer, pp. 275 – 285.

3. Alam, O., Kienzle, J., and Mussbacher, G. Concern-oriented software design.
In Proceedings of the 16th International Conference on Model-Driven Engineering
Languages and Systems - MODELS 2013 (2013), vol. 8107 of Lecture Notes in
Computer Science, Springer Berlin Heidelberg, pp. 604–621.

http://touchcore.cs.mcgill.ca

4. Elrad, T., Bader, A., Mahoney, M., and Aldawud, O. Using aspects to ab-
stract and modularize statecharts. In the 5th Aspect-Oriented Modeling Workshop
In Conjunction with UML 2004 (2004).

5. Hoare, C. Communicating Sequential Processes. Prentice-Hall International,
1985.

6. International Telecommunication Union (ITU-T). Recommendation Z.151
(10/12): User Requirements Notation (URN) - Language Definition, approved Oc-
tober 2012.

7. Kang, K., Cohen, S., Hess, J., Novak, W., and Peterson, S. Feature-
oriented domain analysis (FODA) feasibility study. Tech. Rep. CMU/SEI-90-TR-
21, Software Engineering Institute, CMU, 1990.

8. Kienzle, J. Open Multithreaded Transactions — A Transaction Model for Con-
current Object-Oriented Programming. Kluwer Academic Publishers, 2003.

9. Kienzle, J., Al Abed, W., and Klein, J. Aspect-Oriented Multi-View Mod-
eling. In Proceedings of the 8th International Conference on Aspect-Oriented Soft-
ware Development - AOSD 2009, March 1 - 6, 2009 (March 2009), ACM Press,
pp. 87 – 98.

10. Kienzle, J., Duala-Ekoko, E., and Gélineau, S. AspectOPTIMA: A Case
Study on Aspect Dependencies and Interactions. Transactions on Aspect-Oriented
Software Development 5 (March 2009), 187 – 234.

11. Kienzle, J., and Gélineau, S. AO Challenge: Implementing the ACID Proper-
ties for Transactional Objects. In Proceedings of the 5th International Conference
on Aspect-Oriented Software Development - AOSD 2006, March 20 - 24, 2006
(March 2006), ACM Press, pp. 202 – 213.

12. Klein, J., and Kienzle, J. Reusable Aspect Models. In 11th Aspect-Oriented
Modeling Workshop, Nashville, TN, USA, Sept. 30th, 2007 (September 2007).

13. McNeile, A., and Roubtsova, E. Composition semantics for executable and
evolvable behavioral modeling in mda. BM-MDA’09: Proceedings of the 1st Work-
shop on Behaviour Modelling in Model-Driven Architecture (2009), 1–8.

14. McNeile, A., and Roubtsova, E. Aspect-oriented development using protocol
modeling. Transactions on aspect-oriented software development VII (2010), 115–
150.

15. McNeile, A., and Simons, N. Protocol modelling. A Modelling Approach that
Supports Reusable Behavioural Abstractions. SoSyM 5, 1 (2006), 91–107.

16. Miller, G. The magical number seven, plus or minus two: some limits on our
capacity for processing information. Psychological review 63, 2 (1956), 81.

17. Object Management Group. Unified Modeling Language: Superstructure (v
2.4.1), December 2011.

18. Rashid, A., and Ossher, H., Eds. Transactions on Aspect-Oriented Develop-
ment (TAOSD VI), Special Issue on Dependencies and Interactions with Aspects,
vol. 5490 of LNCS. Springer, 2009.

19. Rossi, M., and Brinkkemper, S. Complexity metrics for systems development
methods and techniques. Information Systems 21, 2 (1996), 209–227.

20. Rumpe, B. Towards Model and Language Composition. In Proceedings of the
First Workshop on the Globalization of Domain Specific Languages (New York,
NY, USA, 2013), GlobalDSL ’13, ACM, pp. 4–7.

21. Schmidt, D. C. Model-driven engineering. IEEE Computer 39 (2006), 41–47.
22. Schöttle, M. Aspect-Oriented Behavior Modeling In Practice. M.Sc. Thesis, De-

partment of Computer Science, Karlsruhe University of Applied Sciences, Septem-
ber 2012.

23. Schöttle, M., and Kienzle, J. On the Challenges of Composing Multi-View
Models. In the GEMOC’13 Workshop co-located with the 16th International Con-
ference on Model Driven Engineering Languages and Systems (MODELS 2013)
(October 2013).

24. Sweller, J. Cognitive load during problem solving: Effects on learning. Cognitive
science 12, 2 (1988), 257–285.

25. Whittle, J. "the truth about model-driven development in industry -
and why researchers should care". http://www.slideshare.net/jonathw/

whittle-modeling-wizards-2012/, 2012.
26. Whittle, J., Hutchinson, J., Rouncefield, M., Burden, H., and Hel-

dal, R. Industrial Adoption of Model-Driven Engineering: Are the Tools Really
the Problem? In Model-Driven Engineering Languages and Systems, A. Moreira,
B. Schätz, J. Gray, A. Vallecillo, and P. Clarke, Eds., vol. 8107 of Lecture Notes in
Computer Science. Springer Berlin Heidelberg, 2013, pp. 1–17.

27. Zhang, G., and Hölzl, M. HiLA: High-Level Aspects for UML State Machines.
In Sel. Rev. Papers Wshs. at MoDELS’09 (2010), S. Ghosh, Ed., vol. 6002 of Lect.
Notes Comp. Sci., Springer, pp. 104–118.

http://www.slideshare.net/jonathw/whittle-modeling-wizards-2012/
http://www.slideshare.net/jonathw/whittle-modeling-wizards-2012/

	Concern-Oriented Behaviour Modelling with Sequence Diagrams and Protocol Models

