
Associations in MDE:
A Concern-Oriented, Reusable Solution

Céline Bensoussan, Matthias Schöttle, and Jörg Kienzle

School of Computer Science, McGill University, Montreal, Canada
{Celine.Bensoussan,Matthias.Schoettle}@mail.mcgill.ca,Joerg.Kienzle@mcgill.ca

Abstract Associations play an important role in model-driven soft-
ware development. This paper describes a framework that uses Concern-
Oriented Reuse (CORE) to capture many different kinds of associations,
their properties, behaviour, and various implementation solutions within
a reusable artifact: the Association concern. The concern exploits aspect-
oriented modelling techniques to modularize the structure and behaviour
required for enforcing uniqueness, multiplicity constraints and referential
integrity for bidirectional associations. Furthermore, it packages different
collection implementation classes that can be used to realize associations.
For each implementation class, the impact of its use on non-functional
qualities, e.g., memory consumption and performance, has been deter-
mined experimentally and formalized. We show how the class diagram
notation, i.e., its metamodel and visual representation, can be extended
to support reusing the Association concern, and present enhancements
to automate feature selection and customization mappings to maximally
streamline the reuse process in modelling tools.

1 Introduction

Model-Driven Engineering (MDE) [6] is a unified conceptual framework in which
software development is seen as a process of model production, refinement, and
integration. To reduce the accidental complexity and the effort needed to move
from a problem domain to a software-based solution, MDE advocates the use
of different modelling formalisms, i.e., modelling languages, to represent and
analyze the system from multiple points of view. For each level of abstraction,
the modeller uses the best formalism that concisely expresses the properties
of the system that are important to that level. During development, high-level
specification models are refined or combined with other models to include more
solution details, such as the chosen architecture, data structures, algorithms,
and finally even platform and execution environment-specific properties. The
manipulation of models is achieved by means of model transformations, ideally
automated by model transformations tools [8].

In the context of MDE, associations play an important role. During the re-
quirements engineering phase, they are used at a high level of abstraction to
formalize relationships among domain concepts in so-called domain models. In
later development phases, as the architecture of the software and the solution

it implements begin to take form, properties are attached to the associations,
e.g., ordering, uniqueness, multiplicity, and navigability. Finally, during the im-
plementation phase, concrete data structures, such as arrays, linked lists or hash
tables, are used to realize associations with multiplicity greater than one.

Because associations are widely used in MDE, modelling tools with code
generators have to generate code from models that contain associations. How-
ever, most current code generators do not provide adequate support for associ-
ations [9,2,12,11,4]. For example, the properties of associations specified in the
model, e.g., multiplicity constraints and bidirectionality, are rarely enforced in
the generated code. Furthermore, there are many ways of implementing associa-
tions with multiplicity greater than one using different collection data structures.
Each data structure has different run-time behaviour, and therefore affects the
non-functional qualities of the software that is being developed, such as perfor-
mance and memory use. Current modelling tools, however, shield the modeller
from implementation details. As a result, they do not document or quantify the
impact on non-functional qualities that underlying implementations for associ-
ations have. As a result, code generators typically resort to default implemen-
tation strategies for associations that do not take into account high-level goals
and non-functional requirements of the application that is being built.

In this paper we describe a framework for dealing with associations in the
context of MDE. We show how we used Concern-Oriented Reuse (CORE) [3] to
capture many different kind of associations, their properties, behaviour, and vari-
ous implementation solutions within a reusable artifact: the Association concern.
The Association concern encapsulates models for many association variants, and
exploits aspect-oriented modelling techniques to modularize the structure and
behaviour required for enforcing uniqueness, multiplicity constraints and refer-
ential integrity for bidirectional associations. Furthermore, it packages several
collection implementation classes that can be used to realize associations. For
each provided implementation class, the impact of its use on memory consump-
tion and performance has been experimentally determined and formalized within
the concern.

The remainder of the paper is structured as follows. Section 2 reviews the
essential background on CORE. Section 3 describes how we designed the Associ-
ation concern. Section 4 presents how to streamline the reuse of the Association
concern within a modelling tool. Section 5 discusses related work, and the last
section draws our conclusions.

2 Background on Concern-Orientated Reuse

CORE [3] is a new software development paradigm inspired by the ideas of multi-
dimensional separation of concerns [22]. It builds on the disciplines of MDE,
software product lines (SPL) [18], goal modelling [13], and advanced modular-
ization techniques offered by aspect-orientation [19,15] to define flexible software
modules that enable broad-scale model-based software reuse called concerns.

A CORE concern is a unit of reuse that groups together software artifacts
(models and code, henceforth called simply models) that address a recurring
domain of interest in software development. The models encapsulated within a
concern capture in a generic way the structural properties and behaviour of all
relevant variations and ways of dealing with the domain of interest at all relevant
levels of abstraction. Building a concern is a non-trivial, time consuming task,
done by the concern designer, who is an expert of the concern’s domain. Deep
understanding of the nature of the concern is required to be able to identify
its user-relevant features, to model the common properties and differences of all
features of a concern at all relevant levels of abstraction , and to express the im-
pact of the different variants on high level stakeholder goals and qualities. This
is ensured by creating requirements, design and implementation models that (i)
realize the features of the concern using the most appropriate modelling nota-
tions and programming languages, and (ii) are eventually refined into executable
specifications.

2.1 The CORE Reuse Process

The concern designer elaborates three interfaces [3] for a concern:
• The Variation Interface describes the available variations of the concern and

the impact of different variants on high-level stakeholder goals, qualities, and
non-functional requirements. The variations are typically represented with
a feature model [14] that specifies the individual, user-relevant features that
a concern offers, as well as their dependencies, e.g., optional, alternative,
requires, and excludes. The impact of choosing a feature is specified with
impact models, which are based on GRL [13].

• The realization of each variant of a concern is described as generally as
possible to increase reusability. Therefore, some model elements are only
partially specified and need to be complemented with concrete modelling
elements stemming from the application models that intend to reuse the
concern. These generic elements are exposed in the Customization Interface.

• The Usage Interface describes how the application can finally access the
structure and behaviour provided by the concern, similar to what the set of
public operations represents for a class in the object-oriented paradigm.

The concern user reuses an existing concern through three simple steps:

1. The concern user first selects the set of feature(s) (called a configuration)
with the best impact on relevant stakeholder goals and system qualities from
the variation interface of the concern based on impact analysis provided by
the CORE tool. Using this configuration, the CORE tool then composes the
models that realize the selected features to yield new models of the concern
corresponding to the desired configuration.

2. Next, the concern user adapts the generated realization models to the appli-
cation context by mapping customization interface elements to application-
specific model elements. Again, the CORE tool helps to establish correct

mappings based on the signatures of the model elements that have to be
customized, and subsequently generates customized realization models.

3. Finally, the concern user uses the functionality exposed in the usage interface
of the customized realization models within his application models.

To demonstrate our framework, we use TouchCORE1 [21], a multi-touch enabled,
software design modelling tool that supports feature and impact models, as well
as realization models expressed using class, sequence, state diagrams, and Java
implementations.

3 Designing the Association Concern

In this section we present the design of the Association concern, which encap-
sulates all relevant variants of dealing with unidirectional, binary associations
between two entities in MDE2. We start by describing the variation, customiza-
tion and usage interfaces of the concern, follow up with an overview of the
structural and behavioural realization models encapsulated within the concern,
and finally describe the experiments that we ran to determine the impact of
different association realization on memory use and performance.

3.1 Association Variation Interface

Coming up with a variation interface for a concern requires i) breaking down
the domain into distinct features, i.e., modules that provide well-defined user-
relevant structure, functionality and/or properties, and organizing the features
and their relationships in a feature model, and ii) identifying the non-functional
qualities that the realizations of the features might impact. Usually, the variation
interface of a concern is not elaborated in a top-down manner. Rather, the
expert domain knowledge of a concern designer typically allows her to sketch
an initial variation interface, which is then refined as more insight is gained
while realizing the features. Figure 1 shows the final variation interface of the
Association concern.

Structure: The first mandatory sub-feature, Structure, differentiates be-
tween an association with a maximum multiplicity of One (single object) and
associations with a multiplicity of more than one, i.e., Many (collection of ob-
jects). The feature One is therefore used for multiplicities of 0..1 and 1..1 .
Among the associations with multiplicity many, there are qualified associations,
where objects in the association are retrieved using a key (feature KeyIndexed),
and Plain associations, which can be Ordered or Unordered. The leaf features
finally encapsulate different data structures and algorithms that implement the
collections with the corresponding properties, namely ArrayList, LinkedList and

1
http://touchcore.cs.mcgill.ca

2 Bidirectional associations are supported as well by using two unidirectional associa-
tions between the same elements in opposite direction.

Figure 1. Screenshot of Variation Interface of the Association Concern

Stack for Ordered collections, HashSet and TreeSet for Unordered ones, and
HashMap and TreeMap for KeyIndexed.

Association Properties: Associations are Bidirectional when they are nav-
igable in both directions, in which case referential integrity must be enforced.
For associations with multiplicity Many, it makes sense to decide whether the
same element can be part of the association more than once or not. The optional
feature Unique ensures that adding an object to an association is only allowed
if the object is not already part of the association. Since the implementation
data structures that we use for unordered collections—HashSet and TreeSet—
do not support duplicate insertion of the same object (i.e., they implement Sets
and not Bags), we specified the constraints that TreeSet requires Unique, and
HashSet requires Unique within the feature model. Finally, the Minimum and
Maximum features constrain the behaviour of insertion/removal operations to
enforce minimum and maximum multiplicity constraints. They are sub-features
of Plain, because they cannot be used in combination with qualified associations.

Impacts: The different variations of association implementations encapsu-
lated inside the Association concern have an impact on memory use and per-
formance. We modelled the impacts with the following goals: Minimize Memory
Footprint, Increase Insertion Performance, Increase Iteration Performance, In-
crease Access Performance and Increase Removal Performance, as shown on the
right side of Figure 1. To determine the weights that drive the evaluation of the
impacts based on a feature selection, we ran an extensive set of experiments that
are described in subsection 3.6.

3.2 Customization Interface

The customization interface of a concern exposes the model elements that define
only partial structure/behaviour. They need to be adapted by the concern user to

|Associated|Data|Value|Data |Key

Figure 2. Customization Interface for Feature KeyIndexed (left) and others (right)

the reuse context by mapping them to concrete model elements in the application
model. To easily identify model elements that have to be customized by a concern
user, the names of these public partial model elements are prefixed with a vertical
bar (“ | ”).

In a directed association, partial structural elements are the class of origin,
i.e., the class that holds the association end, and the destination class. We named
the class of origin |Data and the destination class |Associated as shown in
Figure 2 on the right. For qualified associations, the customization interface
includes an additional partial |Key class as shown in Figure 2 on the left.

3.3 Usage Interface

Figure 3. Usage Int. for ArrayList

The usage interface is defined by the pub-
lic elements in the concern that can be
used by the application. In the case of the
Association concern, the usage interface
is composed of the |Data class and its pub-
lic operations. The features of the concern
do not have a common usage interface,
as the operations of |Data vary with the
properties of the collection. When |Data
holds a single object reference (feature
One), the usage interface consists of a get-
ter and a setter operation. When |Data

holds a collection (feature Many), it provides operations to add and remove ele-
ments. For ordered associations (feature Ordered), additional operations to add
and remove at a specific index are provided. For example, the usage interface for
the feature ArrayList is shown in Figure 3. For qualified associations, the add
and remove operations take as an additional parameter a key.

Since |Data is part of the customization interface, it is mapped by the user
to the class holding the association. As a result, the operations belonging to the
usage interface of |Data are added to the mapped class, ready to be used. The
operations, though, are not part of the customization interface, i.e., they do not
have to be mapped. However, the user may want to rename the operations for
better usability, for example, rename add to addUser.

3.4 Structural Realization of Associations

In CORE, each feature is associated with realization models that describe its
structural and behavioural properties at different levels of abstraction using dif-
ferent modelling formalisms. When a concern user makes a feature selection,
the CORE tool incrementally composes all realization models associated with

the selected features to create user-tailored realization models. In this subsec-
tion, we describe class diagrams encoding different structural variations of the
Association concern.

The realization model of the root feature of the concern simply defines the
two classes |Data and |Associated that we already introduced above. The
realization model of the feature One, which is used when the upper multiplicity
bound of an association end is 1, declares a reference myAssociated pointing
from |Data to |Associated . It also defines a getter and a setter operation for
this reference. On the other hand, the realization model for the feature Many,
which is used when the upper bound of the association is greater than 1, defines
a ! CollectionOfAssociated class that is contained in the class |Data . It is
marked as concern partial with a discontinuous vertical bar (“ ¦”), which means
that it is incomplete just like model elements that are part of the customization
interface of the concern. However, it has to be completed within the concern,
i.e., by other realization models. The realization model of Many also defines the
operations contains, size and getAssociated.

The structure is further refined by the realization model of feature Plain,
which defines operations to add and remove elements to/from the ! CollectionOf-
Associated class. Continuing, the realization model of Ordered adds operations
to add, remove and get elements at a certain index. Finally, the realization
model for features representing concrete implementation data structures map
the ! CollectionOfAssociated class to a concrete Java class, e.g., ArrayList .

3.5 Behavioural Realization

Figure 4. Base Behaviour of add

We modelled the behaviour of operations
using sequence diagrams. Figure 4 shows
the add operation defined in Plain, which
calls add of the contained collection.

Some features of the Association con-
cern may affect the behaviour of other
features. For example, the feature Unique
affects the behaviour of insertion opera-
tions: before adding, a check is performed to determine whether the element
is already in the collection. Maximum also impacts insertion operations: if the
maximum is already reached, the operation returns false and the addition is
not performed. Minimum impacts removal operations: if the collection already
contains the minimum number of elements, it returns false and the element is
not removed. Bidirectional ensures referential integrity. It impacts constructors,
setters, insertion and removal operations. When an element is added to a col-
lection and the association is bidirectional, depending on whether the opposite
side is one or many, the element needs to be set or added on the opposite side.

CORE uses aspect-oriented techniques to augment the behaviour of other
realization models. For example, Figure 5 shows how Maximum extends the
behaviour of Figure 4 to verify that the maximum has not been reached before

executing the original behaviour of add (represented by a white box containing
a “*”).

Figure 5. Aspect Sequence Diagram Maximum

Additional complexity stems from
the fact that there are some be-
havioural feature interactions in-
side the Association concern that
need to be taken care of. For ex-
ample, the behaviour of the fea-
ture Bidirectional requires that
before a new object is associated
with a current object, the object

might first need to be removed from other associations, and the current object
has to be added to the opposite association of the new object, and only then the
new object can be added to the association of the current object. However, the
operations that need to be called to deal with the opposite end of the association
depend on the multiplicity constraints on the opposite end. In certain cases, set-
ter operations should be invoked, in other cases, add/remove operations. These
different behaviours had to be specified in so-called feature interaction resolution
realization models, which are linked to the features they deal with, so that the
CORE tool can apply them automatically when needed.

Figure 6. Interaction Res. Plain/OneOpposite

For example, Figure 6 shows
the feature interaction resolution
model for Plain and OneOppo-
site, which ensures that for bidi-
rectional 0..1 <-> 0..* associa-
tions a new |Associated object
a is only then added to the collec-
tion in the target object |Data ,
if target was successfully set as
the opposite associated object of
a. To ensure that this resolution
is combined in the correct order with the behavioural modification that realizes
Maximum, as shown previously, an additional feature interaction model has to
be defined that first applies Plain/OneOpposite, and then Maximum.

3.6 Determining the Impacts of Association Realizations

In order to provide the modeller with guidance on which of the association
features to choose, we conducted a series of experiments to determine the impact
that the different realizations have on memory use and performance.

Experimental Setup: We ran our experiments on a machine with a 2,4
GHz Intel Core i5 processor and 16GB 1600 MHz DDR 3 memory. The machine
was running Mac OS X 10.9.5. The Java SE Runtime (v1.8.0_20-b26) was con-
figured with 384MB heap space. The model that was used for the experiment
was the simplest possible model, i.e., a model with a directed association myB
with multiplicity 0..* between classes A and B.

n 10 100 1,000 10,000 100,000

ArrayList 80 480 5k 56k 426k

LinkedList 272 2432 24k 240k 2400k

Stack 88 688 5k 41k 655k

HashSet 464 4304 40k 385k 4248k

TreeSet 464 4064 40k 400k 4000k

HashMap 448 4288 54k 543 5846k

TreeMap 448 4048 54k 558 5598k

Figure 7. Memory Usage in Bytes and Corresponding Impact Model

Impact on Memory Use: To determine the amount of memory used by
the different realizations, we created n instances of B (n = 10 (small), n = 100
(medium), n = 1,000 (large) and n = 10,000 (extra-large), and added them to
the association between A and B by successively calling a.addMyB(bi) . We used
the Heap Walker of JProfiler [7] to determine the amount of memory used by the
collection implementation class realizing the association. The results are shown
on the left side of Figure 7.

The relative measured memory use is approximately consistent across differ-
ent orders of magnitude of number of elements. We therefore used the measured
number of KB for 1000 elements directly as negative contribution values in the
corresponding CORE impact model (see the right side of Figure 7). This means
that ArrayList and Stack (with contribution -5) are from a memory use point
of view the best choice, whereas HashMap and TreeMap (with contribution -54)
are the worst choice, i.e., they use approximately 10 times more memory.

Impact on Performance: To measure the impact on performance, we used
an approach similar to the one described in Ahuja [1]. Again, we ran experiments
with associations of different orders of magnitude (#elements = n), and mea-
sured the time t it took to execute each operation op n times from within a loop.
Measuring Java performance is not trivial, because of various factors involving
the virtual machine, the garbage collector, actual heap size at runtime and asso-
ciated non-determinism [10]. To minimize external influences, we refrained from
measuring the first runs to avoid accounting for time spent loading/initializing
code, and then collected measurements of 50 runs. From those runs we calcu-
lated the median as well as the 10th and 90th percentile to minimize effects of
the garbage collector.

The performance measurements for adding/appending n objects to an as-
sociation are shown in Figure 83. Some implementations perform consistently
well, e.g., ArrayList and LinkedList, and others consistently bad, e.g., TreeSet.
However, the relative performance of some varies depending on the order of
magnitude of the number of elements in the association. For example, HashSet
and HashMap perform well for a small number of elements, but then perfor-

3 The results for the other operations, i.e., access performance, iteration, and removal,
are not shown for space reasons. They are available in [5], which also describes addi-
tional experiments that we ran to compare performance on different Java execution
platforms.

!"#$"

!%"#$"

!%%"#$"

!&%%%"#$"

!%&%%%"#$"

!%"'(')'*+$" !%%"'(')'*+$" !&%%%"'(')'*+$" !%&%%%"'(')'*+$"

,--./01$+" 01*2'301$+"" 4+.52" 6.$74'+" 8-''4'+" 6.$79.:" 8-''9.:"

Figure 8. Insertion Performance of Different Collection Implementations

mance worsens for larger associations. We therefore decided to create separate
impact models for each order of magnitude using the median values from the
experiments as negative weights for the impact models.

Discussion: Impact models in CORE are currently exclusively specified us-
ing the goal modelling notation [13]. Goal models work well in the context of
CORE, because they allow vague, hard-to-measure system qualities to be evalu-
ated, e.g., user convenience or security, in addition to more quantifiable qualities,
e.g., cost and number of messages exchanged. Unfortunately, impact models as
they are defined currently can not be parameterized with dynamic information
from the reuse context. As a result, our impact models can not be used for
predicting the actual memory use or the actual performance of the final appli-
cation. Rather, they are intended to help the modeller make design decisions by
quantifying the impacts that one selection has over another relatively speaking.
There exist dedicated performance modelling languages that offer advanced per-
formance simulation and prediction capabilities [17], but how to exploit these in
the context of CORE is out of the scope of this paper.

3.7 Association Concern Design Summary

In the end, the Association concern we designed encapsulates 26 features, spec-
ifies 5 impacts, contains 10 class diagrams, and 25 sequence diagrams (3 of
which are feature interaction resolution models). The feature model allows for
225 possible selections, from which the TouchCORE tool can create 225 differ-
ent user-tailored realization models by combining the corresponding realization
models in different ways to suit the exact needs of the concern user.

4 Using the Association Concern

The complexity of associations (different variations and implementation classes,
impacts, behaviour ensuring maximum, minimum, uniqueness, and bidirection-

ality,and additional behaviour addressing feature interactions) is now encapsu-
lated behind the variation, customization and usage interface of the Association
concern and ready to be reused.

The standard CORE reuse process, outlined in subsection 2.1 and imple-
mented in the TouchCORE tool, is general, i.e., it is applicable when reusing
any concern. It can therefore also be used for reusing the Association concern.
Unfortunately, due to its general nature, the process is unnecessarily tedious for
Association. In TouchCORE, it involves the following effort for the modeller:

1. The modeller first needs to indicate the desire to reuse Association. This in-
volves searching through the reusable concern library to find the Association
concern, which typically involves navigating down the folder hierarchy.

2. When the Association variation interface is displayed, the modeller must
make a selection of the desired variant. The feature model of Association
is large, in particular because of the features that deal with ensuring the
correct behaviour for bidirectional associations. It takes cognitive effort to
visually browse through it and make the desired selection.

3. When the customization interface is displayed, the modeller has to manually
establish the mappings of the source and destination classes of the associa-
tion: |Data and |Associated have to be mapped, as well as |Key in case
of qualified associations. The mappings of the operations are not required,
but in case the modeller desires to rename the generic names of operations
to more specific names, e.g., add to addUser, mappings have to be specified
for each operation that is to be renamed.

Finally, a bidirectional association requires reusing the Association concern twice.
This not only constitutes a duplication of effort, but it is also a potential source
of inconsistencies. In order to avoid errors, the modeller must make sure to select
the right sub-feature of Bidirectional that correctly represents the type of the
opposite association (one, many, ordered, or key-indexed).

In light of these usability issues, we devised a domain-specific language (DSL)
inspired by the concrete syntax for associations defined in UML to streamline
the reuse of the Association concern for modellers. The DSL minimizes the effort
involved and eliminates any risk of mis(re)use. We then integrated this DSL into
the TouchCORE tool in order to facilitate the reuse of the Association concern
while modelling with class and sequence diagrams.

4.1 DSL for Applying the Association Concern

UML already defines a visual notation for associations [16]. A line that connects
two classes represents an association, arrowheads on the association ends depict
navigability, and inclusive intervals of non-negative integers on the association
ends specify a lower bound and a (possibly infinite) upper bound for multiplici-
ties. The default properties for associations in UML are unique and unordered.
It is possible to specify deviations from the default by annotating the association
ends with textual constraints, i.e., {ordered} and/or {nonunique}. For qualified

associations, the UML syntax dictates that the type of the model element used
for lookup is specified in a rectangular box at the border of the originating class.

Since the graphical notation in UML already covers our features Bidirec-
tional, Minimum, Maximum, Unique, Ordered, Unordered, and KeyIndexed, we
simply defined additional textual constraints to allow the modeller to specify
the concrete implementation classes, i.e., ArrayList, LinkedList, Stack, HashSet,
TreeSet, HashMap and TreeMap. This list is automatically extended whenever
additional implementation classes are added to the Association concern.

4.2 Modifications to the Class Diagram Metamodel

In the CORE metamodel [20], the COREReuse class represents reuses. From a
COREReuse one can get to the COREConfiguration, i.e., the set of selected fea-
tures of the reuse. The CORECompositionSpecification, i.e., the set of customiza-
tion mappings can be retrieved through the COREModelReuse, which specifies
the compositions of a reuse for a particular model. To use the Association con-
cern consistently, every navigable association end has to have a corresponding
model reuse of the Association concern. Hence, a directed association between
AssociationEnd, i.e., the class that represents association ends in the class dia-
gram metamodel, to COREModelReuse is needed. The backend of TouchCORE
was updated to create a COREReuse and COREModelReuse (for the design
model) whenever an association end between two classes becomes navigable.

4.3 Automated and Consistent Feature Selections

TouchCORE was adapted in such a way that whenever the modeller manipulates
the graphical representation of an association, e.g., by changing the multiplicity
or navigability, the selected features of the reuse of Association are updated
automatically as follows:
• When the upper multiplicity bound is 1, One is selected, otherwise Many.
• When the upper multiplicity bound is greater than 1 and not many (*),

Maximum is selected.
• When the lower bound is 1 or greater and the upper bound is greater than

1, Minimum is selected.
• When the association is navigable in both directions and the upper bound

on the multiplicity of the opposite end is 1, OneOpposite is selected.
• When the association is navigable in both directions and the upper bound

on the multiplicity of the opposite end is greater than 1, ManyOpposite is
selected.

Additionally, the GUI of TouchCORE was extended to display textual con-
straints, e.g., {ordered} or {ArrayList} on association ends. If the modeller clicks
on the textual constraint, they are presented with a simplified variation interface
of the Association concern. All automatically selected features are not shown,
so the modeller can maximally focus on exploring the impact of the available
implementation classes and to eventually select the most appropriate one.

4.4 Generation of Mappings and Operation Renaming

When a modeller draws a directed, navigable association from class Source
to class Destination , the customization mappings for the Association concern
are automatically created. |Data is mapped to Source, and |Associated to
Destination . For qualified associations, TouchCORE displays a rectangular box
at the association end that allows the modeller to specify the qualifier type. Based
on the modeller’s input, the corresponding mapping for |Key is created.

Additionally, for every operation that is in the usage interface of |Data , a
mapping is created that renames the operation by appending the name of the
association end specified by the modeller. For instance, for a directed association
from class User to class Account with multiplicity 0..* named myAccounts, the
add operation would be renamed to addToMyAccounts.

5 Related Work

To our knowledge, the concern-orientated reuse paradigm is currently the only
modelling approach that supports the encapsulation of different structural and
behavioural designs and implementations and their impacts within one reusable
model. As a result, most modelling tools provide only basic, “UML-like” support
for modelling with associations. However, there is a substantial amount of related
work on code generation optimized for and dedicated to associations.

5.1 Existing Code Generation Approaches for Associations

Harrison describes a technique for generating Java implementation code from
UML diagrams [12]. The authors suggest generating an interface for dealing
with the behaviour of associations (creating, deletion) in a manner transparent
to the user. They propose the creation of an interface and its implementation
for each association end. The interface extends both the destination class and
the association class, if one was modelled. It ensures referential integrity and
multiplicity constraints, but does not provide support for different collection
implementation data structures. A similar approach is adopted by Gessenhar-
ter [11], who proposes that associations be implemented as classes. To implement
an association between A and B, a class AB is created which holds a list of AB
links. Both class A and B have an addBand addAoperation, respectively, that
call a static method in AB to establish a new link.

Génova presents some principles for mapping UML associations to Java
code [9]. They demonstrate that it is unreasonable to ensure the minimum mul-
tiplicity constraint at any moment on a mandatory association end as it reduces
usability. Therefore, they make the user responsible for initializing the system
to a consistent state, and for maintaining it. Akehurst introduces Java code gen-
eration patterns from UML models with dedicated support for associations [2].

5.2 MouseTrap

Motorola has developed its own automatic code generation tool suite called
Mousetrap [23]. The Mousetrap tool suite takes as input design models using
SDL, UML, ASN.1, and ISL (a proprietary protocol language) and produces
highly optimized C code customized for a product platform and a set of perfor-
mance constraints. Mousetrap is a rule-based code transformation system driven
by a vast programming knowledge base.

Section 5.4 of [23] on Abstract Data Types (ADT) is most related to our
work. In their approach, code generation for associations involves the selection
of a concrete implementation of an ADT. Where most code generators simply
pick a default implementation, theirs analyzes the behaviour of the model and
determines the specific ADT that leads to a better tradeoff between memory us-
age and performance. For example, if the collection is often being iterated over,
the system would favour a linked list, as linked lists have superior iteration per-
formance due the the lack of repeated indexing, a fact that our own benchmark
measurements confirmed..

5.3 UMPLE

UMPLE (UML Programming Language) is a textual design modelling tool sup-
porting class diagrams and state diagrams [4]. It has a powerful code generator
that handles multiplicity constraints and referential integrity for associations
just like we do.

From a user’s point of view, the main differences between UMPLE and Touch-
CORE with the Association concern is that UMPLE always translates a many
association to a fixed implementation data structure (ArrayList in Java, a Vec-
tor in C++, an array in Ruby) without determining the best fit or letting the
user decide. As a result, UMPLE does not provide the property unique, and all
generated association implementations are ordered (since they all translate to a
list in the code). However, UMPLE does provide sorted associations, and allows
the modeller to specify the attribute that is to be used for sorting.

5.4 Discussion

One could argue that an advantage of the code generator approach over the
CORE approach is that it clearly separates design decisions, which are made
at the model level, from implementation decisions, which are made by the code
generator (or by a platform expert that configures code generation options before
running the code generator). However, this is not the case here, as the CORE
reuse process allows a modeller to make partial selections. For example, it is
acceptable for a designer to choose the feature Ordered, and defer the decision
of which mandatory child feature from the XOR group—ArrayList, LinkedList
or Stack—should be used in the realization. This decision can be made at a
later point, potentially by a different developer, e.g., a platform expert. Ideally,
the decision could even be automated based on some user-defined optimization

criteria. Currently, though, the developer has to perform his own tradeoff analysis
and opt for faster execution time or decreased memory usage depending on his
preference. In the near future we are planning to build an automated reasoning
system into the TouchCORE tool that exploits the impact information from
the concern’s variation interface to perform automated optimization of non-
functional requirements according to the developer’s priorities.

In the end, the main difference between addressing associations at the mod-
elling level as done in CORE compared to dealing with associations during code
generation is that if one desires to change the way that associations are handled
or to support new association implementations, the latter approach requires
understanding and modifying the code generator. In contrast, in our CORE
approach the modeller can simply update the structural and/or behavioural re-
alization models of existing features of the Association concern, or add new
features and new realization models, if needed. There is no need to modify the
code generation, nor modify any code in the TouchCORE tool.

Finally, while the code generators discussed in this section address the max-
imum, minimum, uniqueness and bidirectionality properties of associations just
as well as we do, they typically do not support qualified associations as we do
through the feature KeyIndexed. Finally, with the exception of Mousetrap, they
do not take into account the non-functional impacts of different concrete data
structure implementations.

6 Conclusion

In this paper we described a framework for dealing with associations in the
context of MDE. We designed a reusable CORE concern named Association
that encapsulates design models for different association variants, and exploits
aspect-oriented modelling techniques to modularize the structure and behaviour
required for enforcing uniqueness, multiplicity constraints, and referential in-
tegrity for bidirectional associations. Furthermore, it supports the use of different
collection implementation classes used to implement associations and documents
their impacts on memory consumption and performance. We showed how class
diagrams, i.e., the metamodel and visual notation used in the TouchCORE tool,
can be extended to support reusing the Association concern, and presented en-
hancements to automate feature selection and customization mappings to max-
imally streamline the reuse process.

References

1. Ahuja, K.V.: Technical Whitepaper: Performance Evaluation | Java Col-
lections Framework. http://scrtchpad.files.wordpress.com/2008/10/

java-collections-performance-evaluation.pdf (2008)
2. Akehurst, D., Howells, G., McDonald-Maier, K.: Implementing associations: UML

2.0 to Java 5. Software & Systems Modeling 6(1), 3–35 (2006)

3. Alam, O., Kienzle, J., Mussbacher, G.: Concern-Oriented Software Design. In:
MODELS 2013. LNCS, vol. 8107, pp. 604–621. Springer (2013)

4. Badreddin, O., Forward, A., Lethbridge, T.C.: Improving Code Generation for As-
sociations: Enforcing Multiplicity Constraints and Ensuring Referential Integrity.
In: Lee, R. (ed.) Software Engineering Research, Management and Applications,
Studies in Computational Intelligence, vol. 496, pp. 129–149 (2014)

5. Bensoussan, C.: Associations in MDE: A Concern-Oriented, Reusable Solution.
M.Sc. Thesis, School of Computer Science, McGill University (March 2016)

6. Douglas C. Schmidt: Model-Driven Engineering. IEEE Computer 39, 41–47 (2006)
7. EJ Technologies: JProfiler. https://www.ej-technologies.com/products/

jprofiler/overview.html

8. France, R., Rumpe, B.: Model-driven Development of Complex Software: A Re-
search Roadmap. In: Future of Software Engineering. pp. 37–54. IEEE (2007)

9. Génova, G., del Castillo, C.R., Llorens, J.: Mapping UML Associations into Java
Code. The Journal of Object Technology 2(5), 135–162 (October 2003)

10. Georges, A., Buytaert, D., Eeckhout, L.: Statistically Rigorous Java Performance
Evaluation. SIGPLAN Not. 42(10), 57–76 (Oct 2007)

11. Gessenharter, D.: Mapping the UML2 Semantics of Associations to a Java Code
Generation Model. In: MoDELS 2008. pp. 813–827. Springer (2008)

12. Harrison, W., Barton, C.: Mapping UML designs to Java. In: OOPSLA. pp. 178–
188. ACM Press (2000)

13. International Telecommunication Union (ITU-T): Recommendation Z.151: User
Requirements Notation (URN) - Language Definition (October 2012)

14. Kang, K., Cohen, S., Hess, J., Novak, W., Peterson, S.: Feature-Oriented Domain
Analysis (FODA) Feasibility Study. Tech. Rep. CMU/SEI-90-TR-21, SEI, CMU
(November 1990)

15. Kienzle, J. (ed.): Transactions on Aspect-Oriented Development VII, Special Issue
on a Common Case Study for Aspect-Oriented Modeling. Springer (2010)

16. Object Management Group: Unified Modeling Language (UML) Superstructure,
v. 2.5. pp. 32–35 (March 2015)

17. Object Management Group (OMG): UML Profile for MARTE: Modeling and Anal-
ysis of Real-Time Embedded Systems (June 2011)

18. Pohl, K., Böckle, G., van der Linden, F.J.: Software Product Line Engineering:
Foundations, Principles and Techniques. Springer (2005)

19. R. Filman, T. Elrad, S. Clarke, M. Akşit: Aspect-Oriented Software Development.
Addison-Wesley (2004)

20. Schöttle, M., Alam, O., Kienzle, J., Mussbacher, G.: On the Modularization Pro-
vided by Concern-oriented Reuse. In: Modularity in Modelling Workshop - MOMO
2016. pp. 184–189. MODULARITY Companion 2016, ACM (2016)

21. Schöttle, M., Thimmegowda, N., Alam, O., Kienzle, J., Mussbacher, G.: Feature
modelling and traceability for concern-driven software development with Touch-
CORE. In: Companion Proceedings of MODULARITY. pp. 11–14. ACM (2015)

22. Tarr, P., Ossher, H., Harrison, W., Sutton, Jr., S.M.: N Degrees of Separation:
Multi-Dimensional Separation of Concerns. In: International Conference on Soft-
ware Engineering - ICSE. pp. 107 – 119. IEEE (1999)

23. Weigert, T., Weil, F., van den Berg, A., Dietz, P., Marth, K.: Automated Code Gen-
eration for Industrial-Strength Systems. In: COMPSAC ’08. pp. 464–472 (2008)

