
Specification of Domain-Specific Languages
Based on Concern Interfaces

Matthias Schöttle Omar Alam
Jörg Kienzle

School of Computer Science, McGill University,
Montreal, QC H3A 0E9, Canada

{Matthias.Schoettle | Omar.Alam}@mail.mcgill.ca,
Joerg.Kienzle@mcgill.ca

Gunter Mussbacher
Department of Electrical and Computer Engineering,
McGill University, Montreal, QC H3A 0E9, Canada

Gunter.Mussbacher@mcgill.ca

Abstract
Concern-Driven Development (CDD) is a set of software engineer-
ing approaches that focus on reusing existing software models. In
CDD, a concern encapsulates related software models and provides
three interfaces to facilitate reuse. These interfaces allow to select,
customize, and use elements of the concern when an application
reuses the concern. Domain-Specific Languages (DSLs) emerged
to make modeling accessible to users and domain experts who are
not familiar with software engineering techniques. In this paper, we
argue that it is possible to create a DSL by using only the three-part
interface of the concern modeling the domain in question and that
the three-part interface is essential for an appropriate DSL. The
DSL enables the composition of the concern with the application
under development. We explain this by specifying DSLs based on
the interfaces of the Association and the Observer concerns.

Categories and Subject Descriptors D.2.10 [Software Engineer-
ing]: Design; I.6.5 [Simulation and Modeling]: Model Develop-
ment

General Terms Design, Languages

Keywords Concern-Driven Development, CDD, Domain-Specific
Language, DSL, Reusable Aspect Models, RAM, Reuse

1. Introduction
Concern-Driven Development (CDD) refers to software develop-
ment approaches that combine the ideas of model-driven engineer-
ing (MDE), aspect-orientation, and software product lines with a
strong emphasis on reuse. Whereas classic MDE concentrates on
models, the main element of focus in CDD is the concern.

A concern is any domain of interest to a software developer1.
It encapsulates a set of models describing properties of that con-

1 This is different from aspect-oriented software development, where the
word aspect is typically used to designate a crosscutting concern.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
FOAL ’14, April 22, 2014, Lugano, Switzerland.
Copyright is held by the owner/author(s).
ACM 978-1-4503-2798-5/14/04.
http://dx.doi.org/10.1145/2588548.2588551

cern for all those phases of software development and those lev-
els of abstraction required to sufficiently understand the concern.
Each concern has a root phase, where the concern manifests it-
self for the first time. Some concerns appear in early phases of
software development, e.g., broadly scoped system properties with
functional, non-functional, or even intentional characteristics. In
later phases, solution-specific concerns appear, e.g., specific com-
munication protocols, concrete authentication algorithms, and de-
sign patterns. In CDD, models are built for the root phase and all
follow-up phases using the most appropriate modeling formalisms
to express the properties of the concern that are relevant during each
phase. Concern models can use any modelling notations. The mod-
elling notation can be object-oriented in nature (e.g., based on the
Unified Modelling Language (UML) [10]), but can also offer other
language mechanisms, such as, for example, aspect-oriented fea-
tures. Additionally, within a concern, model transformations link
models across different levels of abstraction. Finally, a concern
also encapsulates all relevant variations/choices that are available
to software engineers at a given phase, together with guidance on
how to choose among those variations by specifying the impact of
each choice on softgoals and system qualities.

A concern provides three interfaces [1] (for concrete examples
of the three interfaces, the reader is referred to Section 2):

• The Variation Interface describes the available variations of the
concern and the impact of different variants on high-level goals,
qualities, and non-functional requirements. The variations are
typically represented with a feature model [6] that specifies the
individual features that a concern offers, as well as their depen-
dencies (optional, alternative, requires, excludes). The impact
of choosing a feature can be specified with goal models (e.g.,
i* [13], KAOS [3], GRL which is part of the User Requirements
Notation (URN) standard [5], and the NFR framework [2]).

• The Customization Interface describes how a chosen variant
can be adapted to the needs of a specific application. Each vari-
ant of a concern is described as generally as possible to increase
reusability. Therefore, some elements in the concern are only
partially specified and need to be related or complemented with
concrete modeling elements of the application that intends to
reuse the concern. The customization interface is hence used
when a specific variant of a reusable concern is composed with
the application.

• The Usage Interface describes how the application can finally
access the structure and behaviour provided by the concern. For
example, the usage interface of the design model of a concern

is typically comprised of all public classes and methods made
available by the concern.

Consequently, to reuse a concern, a software engineer must 1) se-
lect the feature(s) with the best impact on relevant softgoals and
system qualities from the variation interface based on provided im-
pact analysis, then 2) adapt the generated detailed models to the
application context by mapping customization interface elements
to application-specific model elements2, to finally 3) use the be-
haviour provided by the selected concern features through the us-
age interface.

Building a concern is a non-trivial, time consuming task. It
requires a deep understanding of the nature of the concern to be able
to identify the different features of a concern, to model the common
properties and differences at all relevant levels of abstraction using
the appropriate modeling notations, and to express the impact of
the different variants on high level goals. This can only be done by
a domain expert, i.e., someone experienced who fully understands
the nature of the concern and the tradeoffs involved in the different
available options. Domain experts hence play a crucial role when a
concern is specified for a particular domain as the concern strives
to expose the intrinsic choices and decisions that need to be made
in this domain while encapsulating the solutions that support those
choices.

However, the main idea is to provide a concern that is easy for
non-experts to reuse. Creating a well-crafted concern takes con-
siderable effort and certainly requires domain expertise as the aim
is to exhaustively describe the domain, but, once created, the sim-
plicity of its usage should offset the cost for building the concern.
Domain-specific languages (DSLs) [4] have emerged as one way to
make modeling more accessible to users who may be knowledgable
in a specific domain but not well versed in software engineering
techniques. Often such languages follow a more declarative than
imperative specification style. One of the most important activities
when creating a DSL is to define the key concepts of a domain. In
this paper, we argue that a DSL can be created solely based on the
concern interface of the concern describing the domain in question.
Given the variation interface, the key concepts of a domain can be
identified, and given the customization interface, the composition
specification can be defined for each key concept. Once the con-
cern is composed, the usage interface allows the concern to be used
in the application under development. Furthermore, we argue that
these three interfaces are essential for defining an appropriate DSL.

In the remainder of this paper, we first discuss three motivating
examples in Section 2. Based on this discussion, Section 3 presents
a specification language for the creation of DSLs for a concern. The
conclusion summarizes our contribution and indicates future work.

2. Motivating Examples
While the motivating examples are based on design concerns and
specified with the help of the Reusable Aspect Models (RAM) no-
tation [7], the proposed approach for the specification of DSLs is
equally applicable to requirements concerns and other modeling
notations, as long as the notation supports the three-part concern in-
terface. In addition to RAM, we have extended the Aspect-oriented
User Requirements Notation [8, 9] to support these concern inter-
faces. DSLs often take the form of a profile that specifies a number
of tags or stereotypes that may be applied to specific modeling el-
ements to indicate desired semantics defined for the domain. For
example, MARTE [11] makes use of several tags to define prop-
erties relevant to real time and embedded systems. The proposed
approach described here also uses tags to identify key concepts of

2 Depending on the root phase of the concern, design models or require-
ments and design models may need to be adapted.

Association

DatabaseWithKeyOrdered Unordered

alternative (XOR)

Figure 1. Association Feature Model

aspect Association.Ordered

structural view
|Data

|Associated

0..*

+ add(|Associated a)
+ add(int index, |Associated a)
....

 int size
|Data

|Associated
~ create()
~ add(|Associated a)
~ add(int i, |Associated a)
...

int size
Sequence |Associated

Customization
Interface

(partial classes)

Usage Interface
(callable operations)

mySeq 1

Figure 2. RAM Customization and Usage Interface for Ordered
Association

the concern. Necessary features of RAM are introduced as we go
along with the examples.

2.1 Association Concern
Consider the Association concern as a first example, and the task to
add an association between the Event and Participant classes
in a conference registration system. The feature model of the As-
sociation concern is shown in Fig. 1, indicating that there are four
alternatives when implementing an association.

The association can either be ordered, unordered, accessible via
a key, or a database may be used to realize the association. Note
that there are several ways of implementing an ordered association
or an association with a key, but these sub-features are not shown
for space reasons. In addition to the feature model, the variation
interface should also show the high-level goals of interest for this
concern. However, this part of the variation interface is omitted, be-
cause it is currently not used for the specification of a DSL. Each of
the features of the concern is realized by one or more RAM models.
Depending on the chosen feature configuration, the relevant RAM
models are composed with each other to yield the customization
interface for the concern variant. For example, when the Ordered
feature is selected, the RAM model of the root Association feature
and the Ordered feature are automatically composed to yield the
model shown in Fig. 2.

To apply the chosen variant of the Association concern to the
conference registration system, a software engineer then needs to
bind the relevant application classes to the corresponding elements
in the customization interface of the concern. The elements in the
customization interface are partially defined (denoted by the prefix
’|’ in RAM). In this case, two bindings need to be established to
fully specify the partial elements: |Data → Event; |Associated
→ Participant. This results in a model similar to Fig. 2, except

that each occurrence of |Data is replaced by Event and each
occurrence of |Associated is replaced by Participant.

The example so far used the regular modeling features provided
by RAM to reuse the Association concern for the conference regis-
tration system. On the other hand, a DSL for the Association con-
cern could streamline this process by using a tag instead to indicate
the same reuse of the Association concern, as is illustrated in Fig. 3.

Event Participant0..*
<<ordered>> participants

Figure 3. Use of <<ordered>> from Association

In the figure, the association is tagged with <<ordered>> to in-
dicate the desired configuration of the feature model of the Associa-
tion concern. If a different feature configuration is needed, the tags
<<unordered>>, <<withKey>>, or <<persisted>> could be used for
the features Unordered, WithKey, and Database, respectively. In the
case of the Association concern, there is clearly a one-to-one corre-
spondence between features and tags in the DSL. This is possible
because the feature model identifies the key concepts of the concern,
and hence the domain-specific language!

However, the specification of a list of tags by itself does not yet
sufficiently define a DSL, because the list only specifies the con-
crete syntax of the DSL, but not its semantics. One way to specify
the semantics is to express the tag in an already existing notation,
e.g., by means of a transformation to another notation. The specifi-
cation language for DSLs proposed in this paper does exactly that:
it provides a way to specify how a tag is to be translated into a fea-
ture model configuration and composition specification based on
the variation and customization interface of the concern. For exam-
ple, the specification of the semantics of the <<ordered>> tag is
as follows:
(1) << o r d e r e d >> = A s s o c i a t i o n (Ordered) ;
(2) f o r A s s o c i a t i o n E n d a ;
(3) compose | Data ! a . ge tType () ;

| A s s o c i a t e d ! a . myClass ;

The first line defines the name of the tag as well as the fea-
ture selection of the concern. The second line specifies to which
type of modeling element the tag may be applied (e.g., the class
AssociationEnd from the RAM metamodel). This line also de-
fines a variable for the model element to which the tag may be
applied, which is then used for the rest of the specification. Line
(3) specifies the desired binding of elements in the customiza-
tion interface of the concern (i.e., |Data and |Associated in
the case of the Association concern) and application model ele-
ments. The application model elements are identified with the help
of an OCL (Object Constraint Language) [12] expression, starting
from the element identified in line (2). In the RAM metamodel, an
AssociationEnd is contained in the source class of the directed
association (i.e., Event in Fig. 3), which can be found by calling
getType(). Furthermore, the AssociationEnd has as its class
the target class of the directed association (i.e., Participant in
Fig. 3), which is stored in the myClass attribute. Note that the num-
ber of model elements in the customization interface of the concern
determines the number of composition specifications in line (3).

In summary, the proposed approach for the specification of a
DSL based on the three-part concern interface is as follows:

• Define a tag for each feature configuration of interest for the
concern. In the simplest case, a tag is defined for each variable
feature, but it is also possible to only define tags for a subset.
The list of tags represents the concrete syntax of the DSL and
reflects the key concepts of the domain.

• Formally specify each tag with the help of the proposed speci-
fication language for the creation of a concern DSL by defining

1) the corresponding concern, 2) the represented feature selec-
tion, as well as 3) how the composition specifications can be
derived. The specification language hence defines the seman-
tics of the DSL with the help of the existing, reusable concern
models.

The feature model of the Association concern is rather simple,
as any valid configuration consists of one and only one feature.
Furthermore, the needed composition specifications are also quite
straightforward. The remainder of this section introduces a more
complex example involving the Observer design pattern concern,
before formally defining the specification language in Section 3.

2.2 Observer Concern
The feature model of the Observer concern in Fig. 4 identifies
several variations of the Observer design pattern.

Each of the variable features is again associated with a tag
of the DSL for the Observer concern. Once a subject has been
modified, the subject may either push the data immediately to its
registered observers, or the subject may only notify its observers
that a change has occurred and the observers then pull the data
from the subject if needed. The customization interface for these
two variants is the same, i.e., the Subject and Observer classes,
as well as the modify, getData, and update methods, need to
be composed with application classes and methods, respectively.
Fig. 5 shows the customization and usage interfaces of the Push
Observer. Note that the only difference to the Pull Observer is
that the usage interface contains update() instead of update(*),
because data is not immediately pushed.

Assuming a stock application with a Stock and StockWindow
class as shown in Fig. 6, the Push Observer may be applied to the
application by tagging the setPricemethod with <<push(Stock.get-
Price, StockWindow.refresh)>>. The result of the composition of
the Observer concern with the stock application is shown in Fig. 7.

The main difference between the Association example and the
Observer example is the fact that the composition of the Observer
concern with the stock application requires three methods to be
applied in a coordinated fashion. For each specific modify method,
there exist specific getData and update methods that need to
work with the modify method. The tag hence needs to identify
these related methods in addition to the model element that is
identified simply by the fact that the tag is applied to it. The
additional elements are identified with the help of parameters.The
specification of the <<push>> tag is hence as follows:

(1) <<push (O p e r a t i o n d , O p e r a t i o n u)>>
= O b s e r v e r (Push) ;

(2) f o r O p e r a t i o n m;
(3) when m. C l a s s i f i e r = d . C l a s s i f i e r ;
(4) compose | modify ! m; | S u b j e c t ! m. C l a s s i f i e r ;

| g e t D a t a ! d ; | u p d a t e ! u ;
| O b s e r v e r ! u . C l a s s i f i e r ;

Line (1) now defines parameters in addition to the tag. The pa-
rameters are then used in line (4) for the composition specifica-
tions. Therefore, getPrice is composed with getData (i.e., d) and
refresh with update (i.e., u). The specification of the <<push>>
tag also defines a constraint in line (3) that needs to be satisfied for
the composition to occur. In this case, the getData method (i.e., d)
must be in the same class as the modify method (i.e., m).

A further variation of the Observer concern is the addition of
a controller based on the model-view-controller design pattern3 as
shown in Fig. 8. In the passive approach, the controller manipulates
the model (|Subject) and then tells the view (|Observer) to up-
date itself. In the active approach, the passive approach is extended
to also allow the model to inform the view of a change without the

3 http://msdn.microsoft.com/en-us/library/ff649643.aspx

optional

Observer

Push Active PassivePull

ControllerNotification
Method

Concurrent
Update

mandatory

alternative (XOR)

Figure 4. Observer Feature Model

aspect Observer

structural view

~ Set<|Observer> getObservers()
+ * |modify(..)
~ * |getData()

|Subject

+ startObserving(|Subject)
+ stopObserving()
~ |update(*)

|ObservermySubject

0..1

|Subject<|modify<IgetData, |update>>
|Observer<|update>

 <<ordered>>
 0..*

Figure 5. RAM Customization and Usage Interface for Push Ob-
server

<<push(Stock.getPrice, StockWindow.refresh)>>
+ setPrice(int price)
+ int getPrice()

Stock
 - int price

 + refresh(int newPrice)

StockWindow

Figure 6. Simple Stock Application

~ Set<StockWindow> getObservers()
+ setPrice(int price)
+ int getPrice()

 - int price
Stock

+ startObserving(Stock stock)
+ stopObserving()
+ refresh(int newPrice)

StockWindowmySubject

0..1

 <<ordered>>
 0..*

Figure 7. Simple Stock Application with Observer Concern

help of the controller. Similar to push and pull, the customization
interface is the same for the active and passive approaches, even
though the behavior is quite different.

While it is possible to define an <<activePush>> tag, this case
is not interesting. Such a tag would define everthing needed for the
variant of the Observer concern with the Push and Active features
selected, but this is not any different than defining any other fea-
ture by itself from scratch. Therefore, we focus on how to combine
the effects of several tags by defining a tag <<active>>, which
can be used in conjunction with the tag <<push>>. Consequently,

aspect ObserverWithController

structural view

+* |modify(..)
~* |getData()

|Subject

~ |update(*)

|Observer

|Subject<|modify<IupdateController<|getData>, |update<|getData>>>
|Controller<|updateController>, |Observer<|update>

+ * |updateController(*)

|Controller
 <<ordered>> 0..*<<ordered>> 0..*

Figure 8. Interface (cust. + usage) for Observer(Push,Controller)

only one tag needs to be defined per feature. Furthermore, the con-
straints of the feature model help avoid undersirable interactions
between the features, allowing us to incrementally define the delta
differences of the transformation rules.

If the Active feature is selected in addition to the Push feature, a
Controller class must be defined for the stock application (e.g.,
the class StockController is added to Fig. 6), and the tag in
Fig. 6 must be extended by appending + <<active(StockController
.refresh)>>. The specification of the <<active>> tag is as follows:

(1) << a c t i v e (O p e r a t i o n u2)>> = O b s e r v e r (A c t i v e) ;
(2) f o r O p e r a t i o n m;
(3) when m. A n n o t a t i o n! e x i s t s (a | a . name= ’ push ’) o r

m. A n n o t a t i o n! e x i s t s (a | a . name= ’ p u l l ’) ;
(4) compose | u p d a t e C o n t r o l l e r ! u2 ;

| C o n t r o l l e r ! u2 . C l a s s i f i e r ;

Note how the constraint in line (3) enforces that either the
<<push>> or <<pull>> tag is applied to the same element. To-
gether with either the <<push>> or <<pull>> tag, the <<active>>
tag defines all composition specifiations required to apply the Ob-
server concern.

3. Domain-Specific Languages for Concerns
Based on the examples and discussion in the previous section, the
specification language for DSLs for a concern may be formally de-
fined as shown below. This, of course, is only one possible example
of a DSL. However, we argue that the three interfaces are essential
as the variation interface exposes the semantic differences between
various features of the concern, the customization interface high-
lights composition requirements, and the usage interface defines
the detailed capabilities of the concern.
<DSL> : : = < tag > (" + " < tag >)*
< tag > : : = " < <" <tag_name > [" (" < p a r a m e t e r _ l i s t > ") "]

">> = " < concern > " (" < f e a t u r e _ l i s t > ") ; "
f o r < e l e m e n t _ t y p e > < v a r i a b l e _ n a m e > " ; "
[" when " (< OCL_expression > " ; ") +]
" compose " (< c u s t o m i z a t i o n _ i n t e r f a c e _ e l e m e n t >

"!" <OCL_expression > " ; ") +

Terminals are shown in quotes. The detailed specification of
the nonterminals such as <tag_name> are omitted as the names of
the nonterminals are self-explanatory. Also note that it is possible
to replace <feature_list> with <feature_configuration> if such a
concept exists in the feature model notation used for the concern.
Furthermore, it is possible that the same tag is to be applied to
different types of modeling elements, even though all examples
in this paper only required the tag to be applied to one type of
modeling element. In this case, a second specification for the tag
is created where the third line in the above definition indicates that
the tag may be applied to a different type of modeling elements.
Additional composition specifications are then needed with OCL
expressions tailored to each model element type.

The proposed specification language for a DSL provides the
blueprint for the transformation of a tag into regular RAM feature
configurations and RAM bindings between the elements of the
customization interface of the reused concern and model elements
of the application under development.

4. Conclusion
Domain-specific (modeling) languages allow solutions to be ex-
pressed at the level of abstraction of the problem domain. They
encapsulate domain expertise, and guide the user of the DSL by
constraining him to focus on the relevant concepts of the domain
and their relationships. In other words, DSLs make it easier to cor-
rectly apply domain-specific knowledge.

Concern-oriented software development combines the ideas of
MDE, aspect-orientation, and software product lines. Domain ex-
pertise is encapsulated within a concern that groups models that
express all relevant concepts, properties, and functionality. A con-
cern forms a unit of reuse. Besides the typical usage interface, its
variation interface specifies the features that the concern provides,
and its customization interface details the general concepts of the
concern that need to be composed with application-specific data
and behavior in order to integrate the concern with an application.

In this paper, we demonstrated that it is possible with relative
little effort to define a DSL based on the information provided in
the variation and customization interfaces of a concern. Further-
more, we argue that the three-part concern interface is essential for
the specification of an appropriate DSL. We define a language to
specify the syntax and semantics of such a DSL. We propose to use
tags as the syntax of the DSL, representing the interesting feature
selections, if needed with additional parameters4. We provide the
semantics of the DSL by describing how to derive the variation
configuration and the customization bindings of a concern from

4 It is of course possible to define graphical representations of the tags for
use within graphical modeling environments.

the tags. We illustrated our approach by specifying DSLs for the
Association and Observer concerns, and showed how they can be
applied within an application under development.

In the future, we are planning to extend our specification lan-
guage to also consider the impact model of a concern when defin-
ing a DSL. The impact model expresses how the different variants
of a concern affect high level goals and system qualities. For in-
stance, performance is a good example of a high level goal that is
relevant in the Association concern. For example, a tag <<optimize-
insertion-performance>> could be exposed in the DSL to allow a
user to specify that the algorithm and data structure used to imple-
ment the association should be chosen in such a way that insertion
operations are fast.

5. Acknowledgements
The authors of this work are partially funded by the Natural Sci-
ences and Engineering Research Council of Canada (NSERC).

References
[1] ALAM, O., KIENZLE, J., AND MUSSBACHER, G. Concern-oriented

software design. In Model-Driven Engineering Languages and Sys-
tems, A. Moreira, B. Schätz, J. Gray, A. Vallecillo, and P. Clarke, Eds.,
vol. 8107 of Lecture Notes in Computer Science. Springer Berlin Hei-
delberg, 2013, pp. 604–621.

[2] CHUNG, L., NIXON, B. A., YU, E., AND MYLOPOULOS, J. Non-
Functional Requirements in Software Engineering. Springer, 2000.

[3] DARDENNE, A., VAN LAMSWEERDE, A., AND FICKAS, S. Goal-
directed requirements acquisition. Science of Computer Programming
20 (1993), 3–50.

[4] FOWLER, M. Domain-Specific Languages. Addison-Wesley Profes-
sional, 2010.

[5] INTERNATIONAL TELECOMMUNICATION UNION (ITU-T). Recom-
mendation Z.151 (10/12): User Requirements Notation (URN) - Lan-
guage Definition, approved October 2012.

[6] KANG, K., COHEN, S., HESS, J., NOVAK, W., AND PETERSON,
S. Feature-oriented domain analysis (FODA) feasibility study. Tech.
Rep. CMU/SEI-90-TR-21, Software Engineering Institute, Carnegie
Mellon University, November 1990.

[7] KIENZLE, J., AL ABED, W., AND KLEIN, J. Aspect-Oriented Multi-
View Modeling. In Proceedings of the 8th International Conference
on Aspect-Oriented Software Development - AOSD 2009, March 1 - 6,
2009 (March 2009), ACM Press, pp. 87 – 98.

[8] MUSSBACHER, G., AMYOT, D., ARAÚJO, J., AND MOREIRA, A.
Requirements Modeling with the Aspect-oriented User Requirements
Notation (AoURN): A Case Study. In Transactions on Aspect-
Oriented Software Development VII (2010), vol. 6210 of Lecture
Notes in Computer Science, Springer, pp. 23–68.

[9] MUSSBACHER, G., AMYOT, D., AND WHITTLE, J. Composing goal
and scenario models with the aspect-oriented user requirements nota-
tion based on syntax and semantics. In Aspect-Oriented Requirements
Engineering. Springer Berlin Heidelberg, 2013, pp. 77–99.

[10] OBJECT MANAGEMENT GROUP. Unified Modeling Language: Su-
perstructure (v2.4.1), December 2011.

[11] OBJECT MANAGEMENT GROUP (OMG). The UML Profile for
MARTE: Modeling and Analysis of Real-Time and Embedded Sys-
tems. URL: http://www.omgmarte.org.

[12] OBJECT MANAGEMENT GROUP (OMG). Object Constraint Lan-
guage (v2.3.1), January 2012.

[13] YU, E. Modelling strategic relationships for process reengineering.
PhD thesis, Department of Computer Science, University of Toronto,
1995.

