
On the Challenges of
Composing Multi-View Models

Matthias Schöttle and Jörg Kienzle
School of Computer Science, McGill University, Montreal, Canada

mschoettle@cs.mcgill.ca, joerg.kienzle@mcgill.ca

Abstract. The integration of compositional and multi-view modelling
techniques is a promising research direction aimed at extending the ap-
plicability of model-driven engineering to the development of complex
software-intensive systems. This paper outlines a general strategy for ex-
tending or integrating existing compositional modelling techniques into
a multi-view approach. We demonstrate the practicality of our idea by
explaining how we extended the Reusable Aspect Models (RAM) ap-
proach, which originally only supported structural modelling using class
diagrams, with additional behavioural views based on sequence diagrams.
This involved the integration of the metamodels as well as the model
weavers.

1 Introduction

Model-Driven Engineering (MDE) [6] is a unified conceptual framework in which
software development is seen as a process of model production, refinement and
integration. Modelling is most effective when the properties of the system under
development are modelled using the most appropriate modelling notations to
express the properties of interest at the right level of abstraction. Models of
the same system expressed in different modelling notations are called views.
The ultimate goal of MDE is to obtain an executable model, e.g., in the form
of source code. Therefore, it is necessary to integrate the different modelling
notations that are used to describe the system, and to ensure that the different
views are consistent with each other.

Models of complex systems tend to grow in size, to a point where even in-
dividual views are difficult to understand or analyse. To reduce model complex-
ity, model composition mechanisms have been proposed that allow modellers to
combine several models of the same modelling notation into one [1]. While these
mechanisms can be readily applied to compose models expressed in the same no-
tation, they cannot be applied as such within multi-view modelling approaches.

In this paper we outline a general approach for adapting existing composition
mechanisms into a multi-view modelling context. The paper is structured as fol-
lows: Section 2 describes in general how to integrate an additional compositional
modelling notation with an existing one to form a compositional multi-view mod-
elling approach. Section 3 shows how we applied this idea in the context of the
Reusable Aspect Models (RAM) [4] approach, which originally only supported
structural modelling with class diagrams. We explain how we added an additional
behavioural view that is based on sequence diagrams to the metamodel, and how
we integrated the class diagram and sequence diagram weavers to correctly han-
dle multi-view models. Finally, the last section draws some conclusions.

2 Integration Strategy

This section describes a general strategy for integrating existing compositional
modelling techniques into a multi-view approach. Our idea can also be applied
when an existing compositional modelling approach is to be extended with an
additional view. For the sake of clarity of the discussion, we describe in this
section how two modelling notations I and D are integrated into a multi-view
modelling notation I/D. We further assume that at least the metamodel and
composer for I of the modelling notations are defined.

2.1 Integrating the Metamodels

The first step is to create a new metamodel that integrates I and D. To ensure
that the two views are consistent with each other, it is important to unify the
elements that represent concepts that are shared between I and D. The main
idea of our strategy is to leave one of the metamodels untouched. We call this
metamodel the independent metamodel MM

I

. The second metamodel, named
the dependent metamodel MM

D

, is modified (or created) in such a way that
it builds on the first one, i.e., it references or reuses metamodel elements from
MM

I

for all conceptually shared concepts.
Modifying the second metamodel can be as simple as changing a reference to

a metaclass DC in MM
D

to refer to the metaclass IC in MM
I

that represents
the same shared concept. However, it can also involve more intricate changes.
For example, a behavioural modelling notation could specify an action that is
executed at a certain point in time using text: “transferMoney(a,b,100)” could
signify that at a certain point an operation is invoked that transfers 100 dollars
from account a to b. If this behavioural modelling notation is being integrated
with a structural modelling notation that defines operations, then this text at-
tribute should be replaced by a reference to the metaclass in the structural
metamodel that represents an operation.

2.2 Updating the Model Composers

The metamodel MM
I

was left untouched, and therefore the existing composer
MC

I

still works as is, i.e., it can compose two models I1 and I2 that are instances
of MM

I

to produce a composed model I
C

. However, we additionally require that
MC

I

provides tracing information that details for each model element in I1 and
I2 to which element(s) in I

C

they were mapped to. Note that composers that
support tracing typically already provide such information.

Since MM
D

was modified, the composer MC
D

must be adapted to work with
the new metamodel. This adaptation is rather straightforward, since the compo-
sition algorithm does not change. Only the parts that deal with the composition
of the metamodel elements that now refer to MM

I

need to be updated.

2.3 Composition Algorithm

This subsection describes an algorithm that uses the original composer MC
I

and
the modified composer MC

D

to compose two multi-view models M1 and M2. As
depicted in the upper left corner of Fig. 1, each source model consists of a part
expressed using instances of MM

I

(shown as I
x

) and a part using instances of

Step 1: compose

Step 2: copy

I1 D1 I2 D2

Ic

I1 D1 I2 D2

Ic Dc

Ic D2,c

D1,c

Ic D2,c

D1,c

Step 3: update references

Step 4: compose

M1 M2 M1 M2

Mc Mc

Mc Mc

copy

co
py

Fig. 1. Composition of Two Multi-View Models

MM
D

(shown as D
x

). Since MM
D

refers to MM
I

, some instances in D
x

refer
to instances in I

x

. This is depicted using directed dashed lines.
The multi-view composition algorithm proceeds in 4 steps:

1. First, I1 and I2, i.e., the parts of the models that are expressed with the in-
dependent metamodel MM

I

, are composed using the unmodified composer
MC

I

. This outputs a composed model M
C

, which so far contains the el-
ements in I

C

(see result of step 1 in upper left part), as well as tracing
information on how elements in I1 and I2 were mapped to elements in I

C

.
2. Next, the elements from D1 and D2 are copied into M

C

(see step 2 in Fig. 1).
The result is an inconsistent model M

C

, because it contains external refer-
ences (model elements in D

x,c

still refer to elements in I
x

of M
x

).
3. The tracing information of step 1 is then used to remove the external refer-

ences to I1 and I2, and replace them with references to the corresponding
elements in I

C

(see step 3 in Fig. 1). As a result, M
C

is now internally
consistent, but still contains uncomposed elements (D1,C and D2,C).

4. Finally, the modified composer MC
D

is invoked on D1,C and D2,C to yield
the final composed model M

C

(see step 4 in Fig. 1).

3 Integrating Message Views Into RAM

Reusable Aspect Models (RAM) [4] is a compositional multi-view modelling ap-
proach for concern-oriented software design. On paper, a RAM model supports
structural modelling using class diagrams (structural view), behavioural mod-
elling with sequence diagrams (message views), and protocol modelling with
state diagrams (state views). However, the TouchRAM tool [2] until recently
only supported structural modelling. This section describes how the general in-
tegration strategy described above was used in the context of TouchRAM to
integrate a compositional behavioural modelling notation with an already exist-
ing compositional structural modelling notation.

Integrating the Metamodel and Updating the Composer: The meta-
model of message views (MM

MV

), shown in Fig. 2, is loosely based on UML

Aspect

AbstractMessageView

Interaction

Operation
messageViews 0..*

specifies1

specificationadvice 0..11

MessageViewAspectMessageView references
1

affectedBy 0..*

pointcut

1

0..* properties

lifelines

1..*interaction

1
1..*

Reference

messages
Lifeline

TypedElement

represents1

signature1

- messageSort: MessageSort
Message

ParameterValueMapping StructuralFeature

Parameter

arguments0..*
assignTo

0..1

parameter 1

synchCall
createMessage
deleteMessage
reply

<<enum>>
MessageSort

MessageViewReference

StructuralViewClassifier

operations 0..*

classes

1..*

structuralView

1

parameters0..*

Fig. 2. MessageView (white) integrated with the StructuralView Metamodel (grey)

Sequence Diagrams [5]. It is heavily simplified, though, as UML supports differ-
ent types of interaction diagrams. Furthermore, following the strategy outlined
in section 2, we left the RAM structural view metamodel (MM

SV

) untouched,
and made sure that the concepts in MM

MV

, that also appear in MM
SV

, were
implemented as references to MM

SV

. For example, a RAM Message refers to an
Operation in the structural view describing which operation is invoked, which in
turn has a name and parameters. This is different from UML, where it is possible
to supply a textual description as a message signature. The fact that MM

SV

is
the independent metamodel (MM

I

) and MM
MV

the dependent one (MM
D

) is
nicely illustrated in Fig. 2: The only associations between message view elements
(white) and structural view elements (grey) are directed from white to grey.

We also changed the structural weaver to generate a “weaving information”
data structure that remembers for each element in the two input models to which
output model element it was mapped to.

RAM Composition Algorithm: In RAM, a model M1 can depend on a
model M2 to implement low-level design details. For that, M1 contains instanti-
ations that map generic model elements of M2 to model elements in M1.

Whenever two RAM models M1 and M2 are composed, structural weaving
is performed first (step 1), combining the structural views to produce a woven
model M

C

with the composed structure. This produces weaving information with
the detailed composition mapping. Then, all message views from the lower-level
model M2 are copied into M

C

(step 2). At this point, the message views still
refer to structural elements in M2. Therefore, using the weaving information, all
references are updated to refer to the right elements in M

C

(step 3).
While M

C

already is a consistent model, the behaviour is still uncomposed.
If desired, the RAM modeller can instruct TouchRAM to collect all message
exchanges of a given behaviour within one message view (step 4). This is called
message view inlining, and, when performed, results in replacing all operation
invocations within a message view with the scenarios specified in the correspond-
ing message views. This shows the modeller all behaviour that is executed when
a given operation is invoked in one place.

structural view

message view startObserving

structural view
aspect Observer

~ Set<|Observer> getObservers()
+ * |modify(..)
+ addObserver(|Observer)

|Subject

+ startObserving(|Subject)
~ |update(|Subject)

|Observer

target: |Observer
startObserving(s)

s: |Subject
addObserver(target)

|Subject
|Observer

|modify
|update1

mySet
~ add(|Observer)
int size

<<impl>>
Set

|Observer

0..*
mySubject
0..1

mySet: Set
add(target)

message view createWindow

structural view
aspect StockExchange depends on Observer

+ Stock create(String name, int price)
+ int getPrice()
+ setPrice(int price)

- String name
- int price

Stock

+ StockWindow create(Stock stock)
~ updateWindow(Stock stock)

StockWindow

Instantiation Observer: |Subject → Stock; |Observer → StockWindow; |modify → setPrice; |update → updateWindow;

+ StockGUI create()
+ createWindow(Stock stock)

StockGUI

target: StockGUI
createWindow(stock)

window: StockWindowwindow := create(stock)
startObserving(stock)

message view createWindow

aspect StockExchange

+ Stock create(String name, int price)
+ int getPrice()
+ setPrice(int price)
~ addObserver(StockWindow sw)

- String name
- int price

Stock

+ StockWindow create(…)
~ updateWindow(Stock stock)
~ startObserving(Stock s)

StockWindow

+ StockGUI create()
+ createWindow
 (Stock stock)

StockGUI

target: StockGUI
createWindow(stock) window := create(stock)

startObserving(stock)

stock: Stock

addObserver(window)

mySet: Set

add(window)

window:
StockWindow

...

...

<<impl>>
Set1

mySet
0..*

0..1
mySubject

I1

I2

D1

D2

IC

DC

Fig. 3. The Observer StockExchange and woven StockExchange Models

3.1 Composition Example

The Observer RAM model shown in the top part of Fig. 3 describes the observer
design pattern. Whenever a |Subject is modified (i.e., the operation |modify is
called), it notifies all its |Observers by calling their |update operation.

The Observer model is reused by StockExchange, which is depicted in the
middle of Fig. 3. StockExchange defines a Stock class with a name and price.
A StockWindow displays the information of a specific stock. The StockGUI is
responsible for creating the overall user interface, i.e., windows displaying each
stock. In order to reuse the Observer aspect, StockExchange has to map all
partial classes of Observer (i.e., classes with a “|” prefix)to elements in Stock-
Exchange: |Subject is mapped to Stock and |Observer to StockWindow. Opera-
tions that modify the stock include the setter for the attribute price (setPrice);
updateWindow is the operation that refreshes the window with the updated
information of a stock.

The result of applying our composition algorithm is shown at the bottom of
Fig. 3. The composition of the structural view merges all classes that are mapped
in the instantiation directive, and copies the unmapped classes from the lower- to
the higher-level aspect. For example, Stock and |Subject are merged, but Set is

copied from Observer to StockExchange. After the structural view is composed,
all message views are copied from Observer to StockExchange and the references
updated to point to the classes of the StockExchange aspect. This results in
a functional woven aspect with no dependencies. If the modeller subsequently
wishes to see the complete behaviour of createWindow, she can perform message
view inlining on this operation, which results in the message view createWindow
shown at the very bottom of Fig. 3.

4 Conclusion

This paper presented a strategy for integrating existing compositional modelling
techniques into a multi-view approach(or, alternatively, for extending an exist-
ing technique with an additional view). We demonstrated the practicality of
our strategy by extending TouchRAM, which supported compositional struc-
tural modelling with structural views (class diagrams), with behavioural views
expressed using message views (sequence diagrams). The interested reader is
referred to [7] for a detailed description of the integration of message views.

How well the metamodels can be integrated depends heavily on how well the
concepts from the independent metamodel MM

I

are aligned with the concepts
of MM

D

. If the level of detail of MM
I

is higher (i.e. the mapping from MM
D

to
MM

I

is one to many), it might be possible to add a new superclass into MM
I

.
The composer must then be heavily updated. For example, we had to introduce
a superclass TypedElement for all elements with a type into the structural view
metamodel in order to support message views. If the concepts in MM

I

are more
general, then it might be possible to add new subclasses into MM

I

without
affecting already existing models or the composer MC

I

.
Based on our experience, we believe that our strategy is general, i.e., it can

be applied to any compositional multi-view modelling approach, but further re-
search has to be conducted to prove this. We are, however, confident, because we
also used our strategy to successfully integrate state diagrams into TouchRAM,
which is described in detail in [3].

References

1. Aspect-Oriented Modeling Workshop Series, http://www.aspect-modeling.org/
2. Al Abed, W., Bonnet, V., Schöttle, M., Alam, O., Kienzle, J.: TouchRAM: A

Multitouch-Enabled Tool for Aspect-Oriented Software Design. In: SLE 2012. pp.
275 – 285. No. 7745 in LNCS, Springer (2012)

3. Ayed, A., Kienzle, J.: Integrating Protocol Modelling into Reusable Aspect Models.
In: Proceeding of BM-FA 2013. pp. 1–12. ACM (July 2013)

4. Kienzle, J., Al Abed, W., Klein, J.: Aspect-Oriented Multi-View Modeling. In:
AOSD ’09. pp. 87–98. ACM, New York, NY, USA (2009)

5. Object Management Group: OMG Unified Modeling Language (OMG UML), Su-
perstructure (August 2011), http://www.omg.org/spec/UML/2.4.1/, Version 2.4.1

6. Schmidt, D.C.: Guest Editor’s Introduction: Model-Driven Engineering. IEEE Com-
puter 39(2), 25–31 (2006)

7. Schöttle, M.: Aspect-Oriented Behavior Modeling In Practice. M.Sc. Thesis, Depart-
ment of Computer Science, Karlsruhe University of Applied Sciences (September
2012), http://mattsch.com/papers/masterthesis.pdf

http://www.aspect-modeling.org/
http://www.omg.org/spec/UML/2.4.1/
http://mattsch.com/papers/masterthesis.pdf

	On the Challenges of Composing Multi-View Models

