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To my wife Stéphanie and my parents,
for their wonderful love and support.



Abstract

Aspect-Oriented Programming (AOP) addresses the separation of cross-
cutting concerns from the business logic on the source code level. Aspect-
Oriented Modeling (AOM) allows to do this on a higher level of abstraction
where cross-cutting concerns are addressed during earlier phases of the
software development process.

Reusable Aspect Models (RAM) is an aspect-oriented multi-view
modeling approach that allows detailed design of a software system. Notations
similar to UML class, sequence and state diagrams are used to describe the
structure and behavior of a reusable aspect. Previously a meta-model and a
weaver was defined for the structural view (class diagram) to be used in a tool
for RAM. The definition of message views (similar to Sequence Diagrams)
and weaving of message views has been only done in theory so far.

In this thesis we present the transformation of message views defined
in theory into practice to be usable in the RAM tool. The message views
and their features are evaluated for feasibility and adjustments are made
where necessary to obtain a well-defined meta-model at the end. The weaving
of message views is formalized and a general weaving process defined that
entails all views. The weaver for message views was then implemented.
Finally, the multitouch-enabled tool TouchRAM is extended with support
for visualization and weaving of message views. Furthermore, ideas are
presented on how to offer streamlined editing of message views and how the
overall architecture of TouchRAM can be improved to increase the code
quality and maintainability.
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Kurzfassung

Aspekt-orientierte Programmierung (AOP) ermöglicht die Trennung von
sogenannten querschnittlichen Belangen (cross-cutting concerns) und der
Geschäftslogik auf Quelltext-Ebene. Bei der aspekt-orientierten Modellierung
(AOM) wird diese Methodik bereits auf einer abstrakteren Ebene angewendet,
indem querschnittliche Belange in früheren Phasen der Softwareentwicklung
berücksichtigt werden.

Reusable Aspect Models (RAM) ist ein aspekt-orientierter Ansatz,
welcher detailliertes Design eines Softwaresystems ermöglicht. Die Struktur
und das Verhalten eines wiederverwendbaren Aspekts werden mit Hilfe
von Diagrammnotationen beschrieben, welche auf den UML Klassen- und
Sequenzdiagrammen sowie Zustandsautomaten basieren. Bisher wurde ein
Meta-Modell und ein Weaver für die Struktur von Aspekten definiert. Die
Definition von message views (basierend auf Sequenzdiagrammen) und das
Weben (weaving) dieser in ein Gesamtsystem ist bisher lediglich theoretisch
erfolgt.

Diese Arbeit stellt die Transformation von message views aus der Theorie
in die Praxis vor. Die theoretische Definition wird dabei evaluiert und bei
Bedarf Anpassungen vorgenommen, um ein wohldefiniertes Meta-Modell zu
erhalten. Das Weben der message views wird formalisiert und ein Gesamt-
prozess für das Weben definiert, welcher das Weben der Struktur beinhal-
tet. Darauf folgend wird der Weaver implementiert. Anschließend wird die
Multitouch-Anwendung TouchRAM erweitert, um message views visua-
lisieren und weben zu können. Des Weiteren werden Ideen zum effizienten
Editieren von message views vorgestellt sowie dargelegt, wie die Architektur
der Anwendung verbessert werden kann, um die Qualität und Wartbarkeit
zu erhöhen.
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Chapter 1

Introduction

When designing software systems, the most common software development
methodologies are conventional object-oriented techniques. Software systems
are grouped into modules according to their functionality. Each module
encapsulates a certain functionality of the system. Requirements for a system
that affect every module (e.g., error handling, logging, authentication, trans-
actions) cannot be assigned to a specific module. These requirements are
called cross-cutting concerns as they cross-cut the whole system. Their code
is scattered across every module, which makes it more difficult to maintain
the software system, reusability is reduced and no clear separation from the
business logic is possible. Cross-cutting concerns are often referred to as
aspects.

Aspect-Oriented Software Development (AOSD) is an emerging method-
ology that aims at providing methods to separate cross-cutting concerns. The
goal is to increase maintainability and reusability. Therefore, cross-cutting
concerns can be defined at a central place and specified where in the soft-
ware system they will be applied. When the final application is created,
the concerns will be woven into the application at the appropriate places.
While Aspect-Oriented Programming (AOP) provides this technique at the
source code level, Aspect-Oriented Modeling (AOM) aims at defining aspects
at a higher level of abstraction, which allows a consistent use throughout
the software development process. AOM techniques often make use of the
Unified Modeling Language (UML). To fully exploit what AOM approaches
offer, it can be used in the context of Model-Driven Engineering (MDE),
where models are the primary artifacts. Using the features of both method-
ologies, it allows to retrieve an executable model at the end by using model
transformations and generators.

With Reusable Aspect Models (RAM) such an aspect-oriented ap-
proach has been developed in the past several years at the Software Engineer-
ing Laboratory (SEL) of McGill University in Montreal, Canada. RAM is a
multi-view modeling approach which describes the structure and behavior
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1. Introduction 2

of aspects using diagram notations similar to class, sequence and state dia-
grams of UML. Their respective names in RAM are structural view, message
view and state view. One of the main goals of RAM is to provide a high
level of reusability. Aspects define a certain concern of a software system
and are defined as general as possible. Furthermore, aspects can reuse the
functionality of other aspects. Aspects can then be composed together by
weaving them to a final application at the end.

In the past, a meta-model for the structural view of aspects was defined.
Furthermore, a weaver was implemented, which weaves the structure of certain
aspects together to a final woven model. A graphical tool (TouchRAM) has
been in development, allowing the creation and editing of structural views of
RAM aspects as well as offering the modeler to weave aspects and see the
woven result.

The definition and weaving of message views has been done in theory
so far. Message views were created and defined using a graphical drawing
tool. The goal of this thesis was to define a meta-model for message views
that integrates with the already existing RAM meta-model and to verify
the theoretical realization of message views for feasibility and to make
adjustments where necessary. Furthermore, the weaving had to be developed
and the visualization of message views integrated into TouchRAM.

This paper presents the main contributions of this thesis. These are as
follows:

� message view meta-model: A meta-model for message views was
defined and integrated into the existing meta-model.

– Various improvements were suggested and made.

– For issues that haven’t been resolved yet, proposals on how they
could be resolved have been made.

� weaving of message views: The theoretical algorithm of message
view weaving was formalized.

– Weaving of structural and message views was combined.

– The weaver was prepared to be extended for state view support.

� message view support for TouchRAM: TouchRAM was extended
to support message views.

– The weaver was implemented.

– A visualization of message views was implemented in the tool.

– Message views can be woven in TouchRAM and the woven result
viewed.

– Suggestions on how the current architecture of TouchRAM can
be improved and the code quality be increased were made.

– Ideas on how TouchRAM can offer the designer fast, easy and
intuitive editing capabilities for streamlined editing of message
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views were presented.

The paper is structured as follows. Chapter 2 presents background information
on aspect-orientation and a detailed overview of Reusable Aspect Models.
Chapter 3 describes what the meta-model for message views had to support,
the decision on the structure of the meta-model and what changes were
proposed for message views and to the existing meta-model. Chapter 4
provides an overview on how weaving of message views works, explains
the formalized weaving algorithm and shows some related work. Chapter 5
presents the implementation of the message view weaver, the implementation
of the visualization of message views in TouchRAM, provides ideas on how
the architecture of TouchRAM can be improved and code quality increased
and presents ideas on how streamlined manipulation of message views can be
integrated. The last chapter concludes this paper and presents some thoughts
on future work.



Chapter 2

Background

2.1 Aspect-Orientation

Aspect-Oriented Software Development (AOSD) [5] is an emerging software
development methodology which addresses the identification, specification
and separate expression of cross-cutting concerns in the software development
life cycle. In traditional software development paradigms, that for example
use Object-Orientation, the system is decomposed into units of primary
functionality which are often called modules. Functionality required across
several or all modules, for example, logging, security, caching, authentication
etc., cross-cuts the whole software system. These are referred to as cross-
cutting concerns. When implementing the units of functionality the code of
the concerns is scattered through several modules meaning that their code is
spread over multiple modules. This makes it harder to maintain the system
as changes to a concern have to be applied to all modules. Furthermore, it
results in code tangling, meaning that the code of cross-cutting concerns
gets intermixed with the business logic. This reduces the possibilities of
reusing modules. Even the use of frameworks, e.g., for handling logging, is
not satisfactory as the code is still scattered across all the modules.

AOSD aims to provide techniques and mechanisms to separate cross-
cutting concerns from the business logic by allowing to define them separately
and to express where in the system they have to be applied to. Concerns are
often called aspects. When the final software system is created the concerns
will be unified with the system by applying them at the specified places. This
allows to increase the maintainability and reusability.

Aspect-oriented techniques can be applied at different levels of abstraction.
It evolved from being introduced to the implementation level as Aspect-
Oriented Programming and can now be applied at earlier phases in the
software development process, like the requirements [18] or the design phase
(see Section 2.2).

4



2.1. Aspect-Orientation 5

2.1.1 Aspect-Oriented Programming

Aspect-Oriented Programming (AOP) [10] offers the separation of cross-
cutting concerns from the business logic on the source code level. It builds
on existing programming paradigms like Procedural Programming or Object-
Oriented Programming. Various aspect-oriented programming languages
have been developed where AspectJ [9] is the most widely-known language
offering aspects for Java. Most languages share common concepts on how
aspects can be defined.

A join point model defines various well-defined places in the execution of
a program where aspects can be applied to. A join point can for example be
the execution or call of a method. Depending on the language used this can
include several more join points, like reading or writing a field, initializing
an object or a class or when an exception is raised.

Developers can use pointcuts to quantify a join point, i.e., a pointcut
describes a set of join points. Additionally it is possible to express in what
circumstance exactly a certain join point should be matched. For example,
when implementing the Observer pattern a developer could specify a pointcut
that should match all calls to methods that start with set on classes that
implement the interface Observable.

The structure or behavior that should be added at a join point is called
advice. The most common mechanisms on where the advice is added are
before, after or around the join point. For example, AspectJ also allows to
define whether the advice should be applied when a method call is made
(i.e., the advice is applied to the caller of the method) or when the method
is executed (i.e., the advice is applied inside the method) using different
pointcuts.

An aspect encapsulates those concepts and is defined separately from
the business logic allowing to be applied across the whole system depending
on the defined pointcuts. Weaving is performed when the application is
compiled. The aspects then get woven into the application unifying it to the
final application.

2.1.2 Aspect-Oriented Modeling

Looking at a software development process when only Aspect-Oriented Pro-
gramming is used during the implementation phase this creates a gap between
the design and earlier phases of a software system and the implementation.
The developer has to build a mental bridge between the design of the sys-
tem, which can be based on object-oriented methods for example, and the
aspect-oriented implementation. The process of transforming a non-aspect-
oriented design is complicated and error-prone which leads to a reduction
in the quality of the software system. When tracing back elements from the
implementation to the design of the software system the same process has to
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be applied in opposite order making traceability difficult.
This lead to the emerge of Aspect-Oriented Modeling (AOM) that al-

lows aspect-oriented techniques to be applied at higher levels of abstrac-
tion. Furthermore, approaches can be combined to form a process [17].
Schauerhuber et. al [21] present an in-depth survey which provides identifi-
cation of similarities and differences of several AOM approaches.

Aspect-Oriented Modeling techniques allow the identification and defini-
tion of cross-cutting concerns on a high level of abstraction without having
to consider the details on how they will be implemented. The notations
of AOM approaches are often based on the ideas of the Unified Modeling
Language (UML). In general, AOM approaches can be distinguished between
asymmetric and symmetric approaches [21]. Asymmetric approaches make a
distinction between cross-cutting concerns and the base of the application.
Symmetric approaches, however, don’t have this distinction and the whole
system is divided into aspects.

Combined with Model-Driven Engineering (MDE) [22] the advantages of
each technique can be unified and disadvantages compensated. MDE utilizes
models as the primary artifact in the software development process and aims
to provide and use model transformations, verifications and checks to refine
or combine them to include more and more detail. The goal is having models
at the end where an executable version using generators can be created from.
Ultimately this could mean that it is possible to generate a 100% code.

Instead of performing the process of weaving on the code level, AOM
techniques that support weaving of models allow the composition of complex
models through model weavers. Model hierarchies are used to compose a
final woven model. Alternatively aspect-oriented code can be generated from
aspect-oriented models [16].

2.2 Reusable Aspect Models

Reusable Aspect Models (RAM) [1, 11, 13] is an Aspect-Oriented Mod-
eling approach that offers detailed design by providing scalable multi-view
modeling. It integrates extended versions of three diagram notations from
the Unified Modeling Language (UML). These are class, sequence and
state diagrams. Their respective names in RAM are structural view, message
view and state view. Aspects in RAM describe the structure and behavior of
concerns. It is a symmetric approach meaning that there is no distinction
between aspect and base. Every concern or functionality of a software system
is described by an aspect. One of the main goals of high importance is to
achieve a high level of reusability. Aspects in RAM are defined as general
as possible and mechanisms are provided to reuse functionality of existing
aspects. This allows high-level aspects to be decomposed into lower-level
aspects and other aspects can reuse their functionality as well. Besides, as-
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pects can be shared across applications. Furthermore, the functionality of
existing aspects can be extended by other aspects using pointcut and advice
mechanisms.

RAM aspect models define an aspect interface that clearly designates the
functionality provided by the aspect. Every public operation is part of the
aspect interface. When an aspect in RAM wants to reuse the functionality
of existing aspects this is done by instantiating that aspect. Aspects in
RAM are aware of what functionality they are extended by. Therefore, they
are not oblivious as described by Filman and Friedman. In [6] they state
the definition of AOP as being quantification and obliviousness. However,
when building large applications with AOP, changing a pointcut can lead to
unwanted effects. The results become unpredictable as too many elements
could be affected by a slight change in a pointcut.

Combining several aspects might lead to conflicts when several changes in
the behavior or structure are required by different aspects. For this case, RAM
offers conflict resolution aspects where the resolution of conflicts between
two aspects can be separately defined.

Recently, with TouchRAM a tool has been developed that allows to
create the structural view of aspects, instantiate others, weave aspects and
view the woven result. For this, a meta-model for the structural view was
defined and a weaver implemented. With TouchRAM a library of existing
reusable aspects is provided. The reusable model library offers different design
patterns (e.g., Observer, Singleton etc.), utility aspects (e.g., Named, Map
etc.) as well as networking, transaction and workflow aspects.

2.2.1 Example

For a better understanding of RAM we will use an example aspect to show
the main features of RAM aspects. Furthermore, this example will be used
throughout this paper. We will explain a small part of a stock exchange
application which uses the Observer design pattern [7]. The StockExchange
aspect defines a stock and its window to display it. The Observer design
pattern is used to receive notifications about modifications of a stock and
update the window. This design pattern defines an observer that is able
to register itself on a subject (or observable objects). Each subject can be
observed by many observers. Whenever the subject gets modified it notifies
all registered observers that it was updated. This is a lower-level functionality
and can be reused several times in an application. The Observer pattern is
defined as an aspect allowing it to be used by other aspects or applications
as well. The aspect Observer, however, depends on an even lower-level aspect
called ZeroToMany.
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aspect ZeroToMany

Default Instantiation:
AddAllowed → *

RemoveAllowed → *
Any → *

structural view

message view initializeAssociation

caller: Caller
new:
|Data

new := create(..)

Pointcut Advice

|Data
|Associated

caller:
Caller

new:
|Data

new := create(..)

Any  getAssociated

state view |Data

mySet := create()

state view Set<|Associated>

Existing

create/size:=0

remove[size>0]
/size--

add/size++

destroy

caller: Caller target: |Data
add(a)

mySet:
Set<|Associated>

add(a)

message view remove caller: Caller target: |Data
remove(a)

mySet:
Set<|Associated>

ignore := remove(a)

Pointcut

AddAllowed

RemoveAllowed

Any

Advice

AddAllowed
add

RemoveAllowed

remove

1
mySet 0..*

+ add(|Associated a)
+ remove(|Associated a)
+ Set<|Associated> getAssociated()
+ boolean contains(|Associated)

 
|Data

|Associated~ Set create()
~ add(|Associated )
~ boolean remove(|Associated)
~ boolean contains(|Associated)
~ delete()

- int size
Set |Associated

Implementation:
Set<|Associated>: any java.util.Set<|Associated>

message view cleanupAssociation

caller: Caller target: |Data
destroy(..)

caller: Caller target: |Data
destroy(..)

delete()

Pointcut

Advice

* *

message view destroy affected by cleanupAssociation 

* *

 contains

contains

message view contains caller: Caller target: |Data
result := contains(a)

mySet:
Set<|Associated>

result := contains(a)

Default Instantiation: caller → *; Caller → *; new → *

message view create affected by initializeAssociation 

Default Instantiation: caller → *; Caller → *; new → *

mySet:
Set<|Associated>

Default Instantiation: caller → *; Caller → *; new → *

message view add

Default Instantiation: caller → *; Caller → *; new → *

mySet:
Set<|Associated>

Figure 2.1: The ZeroToMany Aspect.

ZeroToMany

The aspect ZeroToMany occurs very frequently. It defines the association
between two classes using composition with a multiplicity of zero to many
(0..* ). The definition of this aspect is shown in Figure 2.1.
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Structural View The structure of aspects is defined in a structural view
which defines all classes and their attributes and operations. ZeroToMany
defines a class |Data which uses a Set to link an instance of |Data to many
instances of |Associated. |Associated is an empty class.

Classes and operations can be marked partial to specify that they are
uncompleted. These need to be completed before being able to be used
in the application. It is not possible to create instances of partial classes.
Partial elements are represented by a vertical bar ’|’ in front of the elements
name. Partial elements define the mandatory instantiation parameters. The
mandatory instantiation parameters define all model elements that have to
be mapped when instantiating an aspect.

Both |Data and |Associated are partial, i.e., they are incomplete as it is
unclear at this point what those two classes exactly are. Any aspect that wants
to instantiate this aspect has to map both classes to a class of its own structure.
This allows any aspect to introduce an association between two classes with a
composition. The class Set refers to a Java implementation of java.util.Set.
RAM allows to reuse existing classes provided by the programming language
or frameworks being used. Furthermore, |Data contains operations that
allow the adding and removing of associated objects, to check whether a
certain object is contained or the retrieval of the complete set of associated
objects. These operations are all public and hence define the public interface
of ZeroToMany. The operations of Set are aspect-private (denoted by ∼,
which is package private in UML) meaning that they can only be called from
classes inside this aspect. The top right corner of the structural view shows
the mandatory instantiation parameters which in this case are |Data and
|Associated.

Message Views The behavior in terms of collaboration between objects
of an aspect is described using message views. Message views are extended
sequence diagrams. Further details of message views are explained in detail
in Section 3.2. For every public operation a message view has to be provided
detailing the exchange of messages. Furthermore, existing behavior can be
extended. In this example the constructor of |Data is unknown and therefore
the message view is empty. However, the constructor of a class in an aspect
that uses ZeroToMany and got mapped to |Data is affected by the message
view initializeAssociation. This message view describes that whenever create
is called (which is the pointcut) the behavior described in advice has to
be executed. In this case, the behavior is added after the original behavior
(represented by a box with the character ’*’ inside). The Set of |Associated
will be created and stored in the property mySet. The same applies to
the destructor of |Data where the Set will be deleted (see message view
cleanupAssociation in Figure 2.1). In addition, behavior from instantiated
aspects can be extended or replaced.
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State View State Views allow the modeler to specify different states an
object can be in and a protocol on what method calls it accepts in each state.
State views serve as a mechanism to perform model checking or verification
on whether message views comply to the defined state views. The modeled
message views must conform to this protocol. For each class specified in the
structural view that defines operations a state view has to be provided. One
transition for each operation has to be at least contained in the state view.
Due to this rule, a state diagram has to be specified for the class Set. State
views for partial classes are different as can be seen in Figure 2.1. As it is an
incomplete class it is impossible to define an initial and end state. However,
it is possible to specify what states are important for this class. Therefore,
for partial classes a state diagram with pointcut and advice is defined. The
pointcut defines the relevant states this class needs and the advice specifies
in what state calls are accepted to specific methods. Furthermore, this allows
as well to extend the state views of other aspects by modifying states and
transitions using pointcut and advice.

Observer

The definition of the aspect Observer is shown in Figure 2.2. It defines a
class |Observer that can observe one |Subject. In addition to operations, that
allow the start and stop of observing a subject, it defines |update which
allows the subject to notify the observer about changes. |Subject defines an
operation |modify. Both operations are partial meaning that aspects that
want to use the Observer aspect have to specify concrete operations that
modify the subject and an operation that allows the observer to update
by providing mappings. The association between a |Subject being observed
by many |Observers is introduced through instantiating the ZeroToMany
aspect.

Instantiation When instantiating an aspect, RAM currently offers the
modeler two different kinds of instantiations: depends and extends. The
depends instantiation is used for aspects providing different functionality, i.e.,
the modeler wants to reuse the functionality of another aspect and might
want to extend it. The modeler has to provide mappings for all elements that
should be exposed at the higher level. The visibility of unmapped elements
is changed from public to aspect-private [1]. Extends can be used for aspects
with similar functionality modeling the same level of abstraction, when the
modeler wants to extend the functionality of an aspect. In this case the
visibility of elements stays the same. Mappings are provided in the form
|Data → |Associated where first the element from the lower-level aspect
is given and then mapped to the element in the higher-level aspect. An
element from the lower-level aspect can be mapped to many elements of the
higher-level aspect.
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Default instantiation:
Any → *

aspect Observer depends on ZeroToMany

structural view

~ Set<|Observer> getObservers()
+ * |modify(..)

 
|Subject

+ startObserving(|Subject)
+ stopObserving()
~ |update(|Subject)

 
|Observer

Instantiations:
ZeroToMany: |Data → |Subject; |Associated → |Observer; getAssociated → getObservers

message view startObserving caller: Caller target: |Observer
startObserving(s)

s: |Subject

add(target)

caller: Caller target: |Observer
stopObserving()

mySubject:
|Subject

remove(target)

message view stopObserving

message view notification

caller: Caller target: |Subject
|modify(..)

Pointcut

Advice

caller: Caller
|modify(..)

target: |Subject

o: |Observer
|update(target)

 
                          observers := getObservers()

loop [o within observers]

* *

mySubject
0..1

Pointcut Advicestate view |Subject

state view |Observer

Any

Any notify

|modify

Pointcut Advice

|Uninterested |Observing |Uninterested |Observing

startObserving

stopObserving

|update |Uninterested
|Observing

getObservers Idle Modifying

Instantiations:
ZeroToMany: AddAllowed → Any; RemoveAllowed → Any; Any → Any

|Subject
|Observer

|modify
|update

Default Instantiation: caller → *; Caller → *; new → *

Default Instantiation: caller → *; Caller → *; new → *

Default Instantiation: caller → *; Caller → *; new → *

message view |modify affected by notification

Figure 2.2: The Observer Aspect.

When instantiating ZeroToMany in Observer, mappings for the manda-
tory instantiation parameters |Data and |Associated have to be provided.
|Data is mapped to |Subject and |Associated to |Observer. This means that
|Subject will get a Set of |Observers. Additionally the operation getAssociated,
which returns the Set, is renamed to getObservers by mapping it.

In the message views it is now possible—due to the mapping—to call
operations on |Subject that come from |Data of ZeroToMany. For example,
in the message view for startObserving the operation add is called.

Furthermore, in the state views a mapping for the states of |Data has to
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be provided. In this case, all states are mapped to the state Any of |Subject.

StockExchange

The final step in our example is to apply the Observer to a complete aspect,
i.e., the highest level aspect in our example. The StockExchange aspect is
depicted in Figure 2.3. It defines a Stock which has a name and a price and
corresponding getter and setter operations. A stock windows task is to display
the information of a stock. Therefore, it defines the operation updateWindow
that can be called to request the window to update the information of the
stock. In order for a StockWindow to be able to receive updates whenever
the stock was modified, the modeler reuses Observer as this already existing
aspect provides the required functionality.

aspect StockExchange depends on Observer

structural view

+ Stock create(String name, int price)
+ String getName()
+ String setName()
+ setPrice(int price)
+ int getPrice()

- String name
- int price

Stock

+ StockWindow create(Stock s)
~ updateWindow(Stock s)

 
StockWindow

Instantiations:
Observer: |Subject → Stock; |Observer → StockWindow; 

|modify → setPrice, setName; |update → updateWindow;

target: Stockcreate(String name, int price)

          setPrice(price)

message view Stock.create

target:
StockWindow

create(Stock s)

message view StockWindow.create

mySubject := s

          setName(name)

Figure 2.3: The StockExchange Aspect.

The modeler has to instantiate it. When instantiating, the modeler has
to provide mappings for the mandatory instantiation parameters at least.
The mappings are shown in Figure 2.3. The |Subject is the Stock and the
|Observer is the StockWindow. The operations that modify stock are the
setters, hence, |modify is mapped to setName and setPrice. For StockWindow,
|update is mapped to updateWindow as it is the operation that should be
called to request the window to update itself.
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Weaving

Currently only the structural views of aspects can be woven using a tool.
Weaving of the other views has only been done in theory so far. The weaver
in RAM allows to weave aspect hierarchies of arbitrary depth. The designer
is given the choice to either weave an aspect hierarchy completely, i.e, all
aspects the highest-level aspect depends on are woven into this aspect, or to
weave two specific aspects together that are directly dependent. This allows
the modeler to see the result of instantiating an aspect and ensure that the
result is the way it is intended to be.

For all mapped elements the weaver merges them together. Unmapped el-
ements are copied over. Figure 2.4 shows the result of weaving StockExchange
completely, i.e., ZeroToMany gets woven into Observer and ZeroToMany +
Observer woven into StockExchange. This results in an aspect that is inde-
pendent.
|Data, |Subject and Stock got merged. Therefore, Stock now contains the

operations and properties from |Data and |Subject. The unmapped proper-
ties were copied into Stock. As getAssociated was mapped to getObservers
to rename it, getObservers retrieved the behavior of getAssociated. Since
|Associated doesn’t contain anything, only |Observer and StockWindow were
merged. The weaving of message views was omitted for space reasons as this
is explained in more detail in Chapter 4.

aspect StockExchange

structural view

+ Stock create(String name, int price)
+ String getName()
+ String setName()
+ setPrice(int price)
+ int getPrice()
~ Set<StockWindow> getObservers()
~ add(StockWindow observer)
~ remove(StockWindow observer)
~ boolean contains(StockWindow observer)
~ destroy()

- String name
- int price

Stock

+ StockWindow create(Stock s)
~ updateWindow(Stock s)
~ startObserving(Stock s)
~ stopObserving()

 
StockWindowmySubject

 

0..1

0..*

~ Set create()
~ add(StockWindow)
~ boolean remove(StockWindow)
~ boolean contains(StockWindow)
~ delete()

- int size
Set StockWindow

1
mySet

Figure 2.4: The structural view of the woven StockExchange aspect.

Currently only a meta-model for the structural view exists. In order to
support weaving of message views a meta-model is required. We explain the
definition of the message view meta-model in the following chapter.



Chapter 3

Meta-Model for Message
Views

Message views are used to describe the behavior of aspects. The modeler of
a RAM aspect defines how model elements inside an aspect interact with
each other. The focus lies on the description of the interchange of messages
between objects. Message views are based on Sequence Diagrams (SD) of
the Unified Modeling Language (UML). SDs allow to describe message
interchanges in a software system. In RAM, message views only describe
interchange of messages in the form of operation calls. However, message
views have a much higher level of detail. Sequence diagrams don’t require to
define every possible execution path in an interaction. This means that the
modeler may only show the most important information that is necessary to
understand the behavior of the software system or part of it. One goal of RAM
is to be able to generate as much code as possible for aspects. Ultimately this
would mean that 100% code of an application can be generated. However,
this requires to have a much higher level of detail in message views.

One idea for the RAM tool is to offer users the ability to import their
existing UML models. Furthermore, users that designed their models in
UML tools before will be able to reuse them. Only missing information or
restructuring would then be necessary to get them compatible with RAM.
This could lead to a faster adoption by users.

Although the existing meta-model of the structural view is not exactly
the same as the class diagram meta-model, it is similar as it shares the
common concepts (see Section 3.3). Even though message views are mainly
based on UML Sequence Diagrams this doesn’t mean the same meta-model
has to be used. Due to some structural differences and the higher level of
detail this is not possible. However, a subset of it can be used in order to have
as few differences as possible. This can help with importing and exporting
existing UML models. Therefore we looked at existing UML tools and in
particular what underlying meta-model they use. While often a proprietary

14
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format is used to serialize the project which contains the models, almost
all tools offer the possibility to import or export the models to a machine
readable format of the UML specification serialized in XMI (XML Metadata
Interchange). Some of the tools further extend the format, e.g., by adding
visual information. Other tools base their models on the Eclipse UML [26]
meta-model—an Eclipse project offering an EMF1-based implementation of
the UML meta-model—or additionally offer import/export for it.

The order of occurrences of events in UML is defined by their geometrical
(vertical) position. It is not sufficient to have an order that is defined in the
graphical representation of the diagram and not contained in the model itself.
This information is essential for weaving message views, but also for code
generation. We depended the decision on whether to base our meta-model on
the UML meta-model on the possibility of ordering fragments through the
meta-model. In the UML meta-model, the list of fragments in an interaction
is ordered. The send and receive event of a message call are fragments of an
interaction which allows to retrieve the order of messages. The message views
in RAM currently only make use of synchronized message calls, which makes
it possible to use this information. If concurrency support will be added
to RAM and asynchronous messages will be modeled, the order of events
cannot be retrieved by ordering the fragments. In that case it is necessary to
explicitly specify the order of messages, e.g., by defining tuples of events in
the form of < e1, e2 > where e1 is the preceding event and e2 the succeeding
event.

3.1 Overview of UML Sequence Diagram Meta-
Model

In order to be able to compare sequence diagrams and message views and
understand their differences we will take a look at the meta-model of UML
Sequence Diagrams [20] defined by the Object Management Group
(OMG). It is contained in the interaction package of UML which also allows
the description of several other diagrams for different purposes among which
are Interaction Overview Diagram, Communication Diagram and Timing
Diagram. Therefore, the meta-model is defined in a very general way in order
to allow the definition of all possible diagrams. We show the elements of
the meta-model most relevant to sequence diagrams. An example sequence
diagram is shown in Figure 3.1 where we pointed out areas and their corre-
sponding meta-model elements. An excerpt of the UML meta-model of the
sequence diagram is depicted in Figure 3.5.

An Interaction is the encapsulating unit of behavior representing a
sequence diagram. Interactions focus on the interchange of messages between
instances of classifiers. It itself is a Class through inheritance, meaning that,

1The Eclipse Modeling Framework (EMF) is further described in Section 5.1.1.
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getProperty()

  sd example

:Subject
modify()

getObservers()

observer:Observer

 loop [for each observers]
update()

some:Objectcreate

foo(x)

result := foo(-): true

Gate

Gate

Message 
Occurrence
Specification

Destruction Occurrence
Specification

Lifeline

synchronous
message
Execution

Specification

Combined
Fragment

reply
message

create
message

Figure 3.1: An example UML Sequence Diagram with corresponding meta-
model elements pointed out.

for example, it has a name and owns properties. Furthermore, an interaction
contains lifelines, messages, fragments (which is an ordered set) and formal
gates.

Lifelines represent the individual participants of an interaction. It is a
NamedElement and references a ConnectableElement, which represents an
instance of a classifier. For example, this could be an attribute. Furthermore,
lifelines contain a list of references to fragments they are covered by.

A Message represents a specific communication between two lifelines.
This can be the invocation of an operation, raising a signal or creation or
deletion of instances. There are different kinds of communication possible:
synchronized or asynchronous calls, reply, create or delete messages. Messages
have a name and a defined syntax describes how the name of a message is
built together. The message name contains the assignment of the return value
to an attribute, the name of the operation called, arguments that are passed
to the operation as well as specific return values. Using all information, a
message name could look like the following: result := contains(observer)

: true. The return value and assignment, however, are only used for reply
messages. For the given example this would mean that a reply message
assigns the return value true to the variable result when returning the
call to contains with the argument observer. Furthermore, a message is
associated to a send event and a receive event specifying the sender and
receiver of the message. These MessageEnds can be either a Gate, in case a
message is coming from outside the scope of an interaction or leaving this
scope, or a MessageOccurrenceSpecification denoting the occurrence of a
message. This can also be a DestructionOccurrenceSpecification in case of
the destruction of an instance. Both are an OccurrenceSpecification which in
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turn is an InteractionFragment.
An InteractionFragment is the most general unit of an interaction. It is

abstract meaning that the subtypes define what exactly that fragment is and
represents. The fragments of an interaction can be the sending or receiving
of a message, the execution of behavior, referring to other interactions,
a constraint for the runtime, a combination of fragments allowing loops,
alternations etc. Each InteractionFragment covers at least one lifeline. Most
fragments cover exactly one, except for complex fragments that span across
several lifelines. Furthermore, a fragment knows which enclosing interaction
(or operand) it belongs to.

As described before, message occurrences are InteractionFragments. An
ExecutionSpecification represents the execution of behavior on a lifeline. The
duration of the execution is designated by its associated start and finish
occurrence. In most cases these are the receive event of a message and the
send event of the reply. The visual notation is a box (thin rectangle) on a
lifeline. This can be seen in Figure 3.1 when the lifeline of Subject receives
the message modify and starts the execution until it is finished and returns
the result. The execution of behavior can also overlap, for example, when
on lifeline l1 an execution starts by calling message m2 of lifeline l2. The
behavior on l2 makes a call back to l1 using message m3. In this case the box
of the second execution overlaps the box of the first execution.

A more complex fragment is the CombinedFragment. It allows to specify
combined behavior that is executed under certain circumstances. This in-
cludes critical, parallel and optional execution, alternatives, loops etc., which
are referred to as interaction operators. A CombinedFragment consists of one
or more InteractionOperands depending on the operator being used. Each
operand may have a constraint that defines under what circumstance the
behavior inside the operand gets executed. The operand itself—like the In-
teraction—contains an ordered set of fragments. Nested combined fragments
are therefore supported as well. The example in Figure 3.1 shows a combined
fragment with the operator loop. It contains one operand that describes what
is executed inside the loop. In this case it retrieves an element from the set
and calls the update operation on this element.

Other fragments that are not relevant in our case but should be men-
tioned nevertheless are StateInvariant, for specifying runtime constraints,
InteractionUse, for referring to another interaction that should be executed
at that point and Continuation, for use in combined fragments with an alt
operator to specify continuation of different branches.

3.2 Features of Message Views

UML Sequence diagrams can be described using a high level of abstraction.
The UML specification [20] allows to provide a general overview of the
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interaction, meaning that not many details have to be provided. For example,
no concrete methods have to be declared, a message can just have a name
describing what happens or what gets transferred.

Message views in RAM are tied to an aspect and define the behavior
of the elements defined in the structural view. For each public operation
of a class a message view has to be provided. Inside the message view only
calls to itself or classes that are associated with this class can be made. This
includes operations and classes that become available through mappings when
instantiating other aspects. At the beginning, an analysis of the different
features of message views had to be performed in order to be able to specify a
meta-model that is sufficient and provides the level of detail that is necessary
for message views. Using existing RAM models we evaluated the features of
message views. A collection of main features of message views is shown in
Figure 3.2.

message view initializeAssociation

caller: Caller
new:
|Data

new := create(..)

Pointcut Advicecaller:
Caller

new:
|Data

new := create(..)

mySet := create()* *

message view LowerLevelAspect.bar affected by initializeAssociation 

mySet:
Set<|Associated>

Default Instantiation: caller → *; Caller → *; new → *

caller: Caller target: Foobar
result := foobar(object)

o: Object
temp := getFoo(object)

false

true [else]

object: SomeClass

max := getCount()

message view foobar 

totalMax := 0

loop [o within objects]

opt [temp > result]

totalMax := temp

alt [totalMax > max]

Default Instantiation: caller → *; Caller → *; new → *

Figure 3.2: The main features of message views using the example of the
foobar operation.

RAM distinguishes between three main kinds of message views.
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Message View A message view (or normal message view) defines the
behavior of a method. It highlights the interchange of messages that is
executed when the described method is invoked. Additionally, a message
view knows what aspects extend its functionality. We call this affected by, as
this message view is affected by other (aspect) message views.

Aspect Message View An aspect message view defines behavior that
extends other message views. It contains a pointcut and an advice. The
pointcut can be the call of a method and is used to find a match in the affected
message views. The advice describes the behavior that will be inserted at the
found match point (also called join point in AO terminology). Additional
behavior can be added before, after or around the original behavior. This is
designated by a box containing the character ’*’ which represents the original
behavior. The position of this original behavior box defines where the advice
will be applied.

Message View Reference A message view reference allows to reference
a message view coming from a lower-level aspect. An aspect that instantiates
another aspect can extend the behavior of lower-level aspects. Therefore, it
references such a message view and defines aspect message views that extend
the functionality of this message view. The message view reference therefore
just states additional affected by information for the referenced message view.

Using Returns In case an operation returns something, it is possible to
assign the return to a property of the calling instance. Additionally, temporary
variables are used to store values, e.g., the return of a message call, and to
pass them as an argument to another message or to return it. Furthermore,
when calling an operation, the arguments for the formal parameters can be
passed. In the example message view shown in Figure 3.2 the return of the
call to getCount and getFoo is stored in a temporary variable. When looping
through all objects, the getFoo method of each object is called, passing the
reference to the actual parameter object and the return stored in a temporary
variable temp. While both techniques are also possible in sequence diagrams
this can only be done by defining the messages’ name. For message views in
RAM this is not sufficient, as existing properties should be referenced.

Referencing Original Behavior The pointcut and advice both can con-
tain an element that represents the original behavior of the advised message
view. The notation of this element is a box containing the character ’*’ inside.
Depending on the position of this box, the designer defines whether the
advice gets woven in before, after or around the original behavior.
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Catching Exceptions UML does not specify an interaction operator
denoting a try catch block where exceptions can be caught and handled. A
new operator is used as this is necessary in message views. The disruptable
operator defines a combined fragment with an operand representing try and
following operands each representing catch. At the end a finally operand can
be used to define behavior that has to be executed at the end regardless of
what happened.

Caller Lifeline Every message view contains a lifeline representing the
caller of a message view. The first message between the caller and target
serves as the beginning of the interchange of messages. In case there is a
return the caller will retrieve the return from the target.

Default Instantiations Furthermore, message views have so called default
instantiations. They define restrictions on the lifelines (or instances) and
classes. For example, if there is more than one instance of a specific class, one
of the instances could be specifically stated. On the caller of a pointcut this
would mean that only calls from this instance would be considered. On the
class this means that only calls to a certain class (i.e., the lifeline originally
represents a super class) will be considered. The visual representation looks
like a mapping as can be seen in Figure 3.2.

3.3 Current Meta-Model of RAM

Before the definition of the message view meta-model can be discussed, we will
describe the current meta-model of RAM in order to allow an understanding
of where the defined meta-model has to fit in and what existing elements
can be reused or referenced. The meta-model described here evolved from a
meta-model mainly focusing on the structural view to its current form as
a preparation for this thesis. Furthermore, new requirements that occurred
during the development of TouchRAM were integrated.

3.3.1 Overview

The unit that is modeled in RAM is an aspect. Therefore, this represents the
root element of the meta-model which contains all other elements directly or
indirectly. Generally, an aspect contains its different views. As currently only
the structural view is supported, the meta-model contains only this view.
Figure 3.3 depicts an overview of the current meta-model.

An Aspect is a NamedElement. Besides containing a StructuralView it
can contain a Layout and many Instantiations. Instantiations describe the
aspects that are instantiated and their mappings. The type of an instantiation
describes whether it is a depends or extends instantiation. The Mapping
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AspectNamedElement

StructuralView

Layout

Mapping

Instantiation
- type: InstantiationType

MappableElement

structuralView 1 mappings 1..*

instantiations

0..*

layout 0..1

fromElement

1
toElements 1..*

EObject Map EObject
value

1

value

1

LayoutElement
- x: float
- y: float

Figure 3.3: General overview of the current meta-model of RAM.

maps from an element of the instantiated aspect to one or more elements
of the current aspect or another lower-level aspect that was instantiated.
All model elements that should be mappable inherit from the abstract class
MappableElement.

A Layout contains the layout for visualizing elements. Currently only
their x and y position are saved as TouchRAM automatically layouts all
elements. Layout contains a map. For each container element (the key), e.g.,
the structural view, a map (the value) is provided. That map itself contains a
map from the actual element with a layout (the key) to its layout information
LayoutElement (the value). The key can be any object of classes that are
defined in the meta-model2.

Furthermore, an Aspect contains a list of its mandatory instantiation
parameters. This is a derived property as it can be computed from all elements
of the structural view that are partial.

3.3.2 Structural View

The Structural View represents the class diagram and its basic structure
is shown in Figure 3.4. It contains a list of Classifiers. Classifier is an
abstract class that has a unique name among the structural view and may
contain operations. The RAM meta-model distinguishes between classes
an aspect introduces and classes that are reused from the programming
language or a certain framework. In Section 2.2 we described how the aspect
ZeroToMany reuses the class java.util.Set of Java (see Figure 2.1). An
ImplementationClass inherits the properties of Classifier and additionally
has an instance class name stating the class name of the implementation
class.

An Operation has a name and attributes that describe the operation, i.e.,
whether the operation is abstract, partial or static and what visibility it has.

2In the Eclipse Modeling Framework (EMF) all classes inherit from EObject.
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StructuralView

ObjectType

Classifier

Parameter

Operation
- abstract: boolean
- partial: boolean
- static: boolean
- visibility: Visibility

operations 0..*

ends 2

classes

1..*

ImplementationClass
- instanceClassName: String

Class
- partial: boolean
- abstract: boolean

Attribute

associationEnds

0..*

NamedElement

AssociationEnd
- navigable: boolean
- lowerBound: int
- upperBound: int
- referenceType:
  ReferenceType

attributes 0..*

Association
associations

1..*
assocation 1

Type

1

myClass

PrimitiveType

public
private
protected
package

<<enumeration>>
Visibility

types 0..*

type 1

parameters

0..*

returnType 1
1

type

Regular
Composition
Aggregation

<<enumeration>>
ReferenceType

Figure 3.4: An excerpt with important elements of the structural view
meta-model of RAM.

In addition, an operation has a return type and may have parameters. A
Parameter has a name and a type.

A Class is a specialization of Classifier as well. It has attributes that
allow a class to be defined as abstract or partial. A class may have one or
more super types. Furthermore, it contains properties. The properties are
distinguished between Attributes and AssociationEnds. This is different to
the UML Class Diagram where a class contains properties which refers to
both. An Attribute is a simple property of a class. It has a name and is typed,
where the only possible types are primitive types. An AssociationEnd has a
name and a lower and upper bound specifying the multiplicity of the property.
A reference type declares the kind of aggregation of this property. This can
either be regular for no aggregation, aggregation for a shared aggregation or
composition for aggregated composition. Additionally, an AssociationEnd
specifies whether it is navigable and it belongs to an Association.

Associations are directly contained by the Structural View and are
associated with two ends. Therefore, the type of an AssociationEnd can be
derived from the other end, i.e., the type is the containing class of the other
end. Additionally, an association has a name which can be used for high level
designs.

Some types are defined by the classes of the structural view. Each class
is also an ObjectType which in turn is a MappableElement. Furthermore,
operations are a MappableElement. Currently classes and operations can be
mapped. The StructuralView allows to define certain PrimitiveTypes and
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some special types. Among the special types are void and any which can be
used as a return type of an operation. Any allows to specify that anything
can be returned by an (partial) operation. In Figure 2.2, the operation
|modify has such a return type. Furthermore, the following PrimitiveTypes
are currently defined: boolean, int, char and String. PrimitiveTypes are at
the same time ImplementationClasses as these types represent a type of the
programming language being used. In Java, for example, for each primitive
type a class exists allowing certain operations to be called on objects of these
types.

3.4 Definition of Message View Meta-Model

The first step was to extract the required elements from the UML meta-model.
As the UML meta-model is very general, allowing to use the same elements
for several different diagrams, they contain numerous properties. Not all of
them are required for sequence diagrams or for the message views. Figure 3.5
presents the core of the meta-model that was extracted with the necessary
properties. The multiplicities of associations are mostly unrestricted. For
the message view meta-model, we restricted this further to conform to the
requirements. In the following sections we describe in detail the different
aspects of the meta-model we defined allowing to model message views. This
includes changes that had to be made in the structural view and changes
that were proposed for message views. At the end we will show the complete
message view meta-model.

3.4.1 General structure

An Aspect can contain several message views of different kinds. The three
different kinds were explained in Section 3.2. For each kind, a class was
introduced. As an Aspect can contain several different kinds, each class is a
specialization of AbstractMessageView, which allows an Aspect to contain
any kind and number of message views. The structure of the message views
is shown in Figure 3.6.

Each message view can be affected by AspectMessageViews. For a
MessageViewReference this is mandatory, as this is the purpose of speci-
fying one. This restriction can be enforced through an additional constraint
that checks for at least one aspect message view it is affected by.

In addition to that, a MessageViewReference references a MessageView.
The referenced message view comes from an instantiated aspect.

The MessageView knows which operation it specifies. Besides, the message
view contains the specification of the operation it specifies. However, this is
not mandatory because partial operations usually don’t have a specification.
When their aspect is instantiated, a mapping will be provided for this
operation, which in turn has a specification.
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NamedElement
- name: String

Interaction

ConnectableElement

OccurrenceSpecification

MessageEnd

InteractionFragment

- messageSort: MessageSort
Message

MessageOccurrenceSpecification

- interactionOperator: InteractionOperatorKind
CombinedFragment

InteractionOperand

DestructionOccurrenceSpecificationValueSpecification

synchCall
createMessage
deleteMessage
reply

<<enum>>
MessageSort

alt
opt
loop
critical

<<enum>>
InteractionOperatorKind

represents 0..1
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lifelines
0..* fragments {ordered}

1..*

sendEvent receiveEvent0..1 0..1
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1..*
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1
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enclosingInteraction 1..*
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LiteralString
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InteractionConstraint
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Figure 3.5: The core of the meta-model extracted from the UML meta-model
for Sequence Diagrams.

AspectNamedElement
- name: String

AbstractMessageView

Interaction

Operation

messageViews 0..*

specifies
1

specification

advice

0..1
1

MessageView

AspectMessageView MessageViewReference

references
1

affectedBy
0..*

constraint: 
MessageViewReference 

needs at least one 
affectedBy

pointcut 1

constraint: 
partial methods may 

have no specification, 
non-partial methods 

must have a 
specification

Figure 3.6: The structure of message views and their integration into an
aspect.

Both MessageView and MessageViewReference don’t have a name as
this information can be retrieved from their referenced elements, i.e., the
specified operation and the referenced message view (which in turn gets it
from the specified operation).

AspectMessageViews are named describing their purpose. For example,



3.4. Definition of Message View Meta-Model 25

in the aspect Observer shown in Figure 2.2, the aspect message view that
extends the functionality of the operation modify has the name notification. Its
purpose is to notify every observer that is registered on the subject to receive
updates. The advice of the aspect message view is—like the specification of
a message view—an Interaction as well, having the only difference that this
interaction contains the box for original behavior.

Pointcut

In the current graphical diagrams of message views, a pointcut is like an advice
and therefore, an Interaction could be used as well to model the pointcut.
However, in analyzing existing models of RAM aspects we noticed that all of
the current models use the same (simple) pointcut kind. The example aspects
in Figure 2.1 and Figure 2.2 show this call operation pointcut. The only
exception is an old version of the aspect Transaction of the AspectOPTIMA
case study [12]. It used a more complex pointcut where a message call between
the start and commit of a transaction was used as the pointcut. However, in
the current version of this aspect this pointcut is not used anymore.

For the current version of the meta-model we therefore decided to use a
reference to the operation. A call to this operation represents the pointcut
and will be matched. The pointcut can still be visualized in the same way. If
other pointcuts have to be supported in future versions, the pointcut can,
for example, be changed to an interaction that allows to model the pointcut.

3.4.2 Interaction

An Interaction is the unit encapsulating the actual behavior in the form of
message interchange. For this purpose it contains Lifelines, Messages, Gates
and the ordered set of InteractionFragments.

An interaction, however, is not the only element that contains fragments.
As described in Section 3.1 an InteractionOperand of a CombinedFragment
contains fragments as well. Due to the fact that an InteractionFragment knows
its enclosing element, in the UML meta-model a fragment has an association
to the enclosing interaction as well as an association to the enclosing operand.
Both have a multiplicity of 0..1 as Figure 3.5 depicts. In order to have one
association to the container of an element we introduced FragmentContainer,
which contains the ordered fragments. The InteractionFragment in turn
knows the FragmentContainer it belongs to. Figure 3.7 shows the definition
of Interaction including the changed part of the meta-model. Both Interaction
and InteractionOperand are a subtype of FragmentContainer.

3.4.3 Local properties

Interaction itself may contain properties. This feature can be used in order to
define an instance for a lifeline, e.g., which is the receiver of a call. In the UML
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Interaction

InteractionFragment

InteractionOperand

0..* formalGates

lifelines1..*

1..*fragments {ordered}

container1

interaction 1

FragmentContainer
1..*

Message
messages

Reference

properties0..*

Lifeline

Gate

NamedElement
- name: String

Figure 3.7: The definition of Interaction in the meta-model.

meta-model an interaction is a specialization of Class and therefore owns
properties. In RAM however, the structural view meta-model distinguishes
between attributes and association ends. Neither of them can be used for
this case, because an Attribute has a primitive type and an AssociationEnd
belongs to an association (see Section 3.3).

One of the features of message views is the possibility to use temporary
variables. These can be used to temporarily store return values, reuse them
in subsequent behavior, to be passed to another message or be used as the
return value. An Attribute can be used for simple variables that have a
primitive type. However, for instances of classes, the same problem as with
the properties of an interaction exists.

Structural View Meta-Model Changes

In order to allow the creation of properties that have a class as its type,
the structural view meta-model had to be adjusted. Different options were
evaluated:

� Introduction of a Reference as a replacement for Association and
AssociationEnd. A reference belongs to a class and has a type. One
reference from class A to class B represents a uni-directional reference.
A bi-directional reference is realized using two references, one from
A to B and the other one in the opposite direction. Each reference
knows its opposite if it exists. This alternative is based on the Ecore
meta-model used by the Eclipse Modeling Framework (EMF).

� Introduction of Property as a replacement for Attribute and Associa-
tionEnd. This is how it is realized in UML. A class owns properties,
which can be used by an association. Besides, properties can be owned
by the association itself, e.g., if it is a non-navigable property.

� Adding of an additional class Reference which allows the definition of
properties. This way, only classes would be added to the meta-model.
Existing classes wouldn’t have to be changed, which doesn’t require
the change of existing instances (models) of the meta-model (meaning
that existing models are still compatible).
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StructuralFeature
- static: boolean

Parameter

Reference

NamedElement

Attribute

TemporaryProperty

TypedElement

AssociationEnd
- navigable: boolean

Property
- lowerBound: int
- upperBound: int
- referenceType:
  ReferenceType

ObjectType

type1

Figure 3.8: An excerpt of the structural view meta-model after the intro-
duction of Reference.

On the one hand it was required to keep associations, as the possibility
of defining association classes should be available in the future. Association
classes are associations with additional properties. On the other hand, signif-
icant changes in an existing meta-model require the migration of existing
models and the adaption of existing tools using a meta-model. On the basis
of these requirements we decided to introduce an additional class Reference.
The changes in the structural view meta-model are illustrated in Figure 3.8.
As Reference and AssociationEnd share common characteristics, such as
lower and upper bound and the type of the reference (i.e., the aggregation
kind), a super type for both—Property—was introduced, which holds those
properties. Additionally, a Reference has an association to ObjectType, which
specifies its type. In this case the association cannot refer to Type, as this
would include the types void and any as well. In order to be able to just have
temporary variables that are either an Attribute or Reference, we introduced
a super type TemporaryProperty. An Attribute and Property (meaning both
Reference and AssociationEnd) are subtypes of StructuralFeature, used by
the Message, which is explained in Section 3.4.5. Furthermore, a Struc-
turalFeature can be static. This is not only required to specify static features
of classes, but necessary for lifelines that represent a meta-class. We explain
this in the following section.

3.4.4 Lifeline

As mentioned before in Section 3.4.3, temporary variables can be used in
order to store values and subsequently use them. A temporary variable is
usually available for a limited time. From a source code perspective this
could be inside an operation body or inside a code block. In the case of a
sequence diagram this could be during the execution of a message call that is
visualized as a rectangular box on a lifeline (see Figure 3.1). However, the use
of ExecutionSpecifications was omitted. Currently in RAM, only synchronous
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InteractionFragmentcovered
1..*

coveredBy
1..*TypedElement

represents

1

localProperties0..*

TemporaryProperty

Lifeline

Figure 3.9: The definition of a Lifeline in the meta-model.

message calls are supported. The execution of a message on a particular
lifeline yields from when the message call is received until the last call after
receiving that call is made. Therefore, it is possible to keep the meta-model
simpler. Furthermore, the visualization of message interchanges can still
display execution specifications, if necessary, because it can be calculated
based on the available information. If ever there is a need of integrating it in
the meta-model, the meta-model can be extended at a later point.

Figure 3.9 presents the definition of a Lifeline. Additionally, a Lifeline
knows which InteractionFragments it is covered by and what instance it is
represented by. In UML, represents is associated with a ConnectableElement,
which can either be a Property or Parameter. In our case, it can be an
Attribute (in the case an instance of a primitive type is required), a Property
or a Parameter. All of those elements are either explicitly or implicitly
typed. The AssociationEnd is implicitly typed through the containing class
of the opposite end. For this purpose, the structural view meta-model was
extended by a super type TypedElement, whose subtypes are Parameter and
StructuralFeature. The part of the structural view meta-model including
TypedElement is shown in Figure 3.8.

A lifeline can either represent an instance of a classifier or the classifier
itself. The latter case allows to call static operations on the meta-class.
The UML specification [20] does not specify explicitly how this is achieved.
However, in UML, a feature of a classifier (e.g., a property) can be de-
fined as static. In such a case it represents the classifier itself. The default
case (non-static) represents an individual instance of a classifier. The meta-
model of the structural view was extended with that information allowing a
StructuralFeature to be declared as static, as described in Section 3.4.3. A
Reference which is static can then be added to an Interaction as a property.
Lifelines representing this property would only be visualized with the name
of the classifier and a stereotype << metaclass >>.

Discussion on Caller and Default Instantiations

A special case is the lifeline representing caller as illustrated in Figure 3.2.
In order for a lifeline to represent a caller, a property with that type has
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to exist. Consequentially a class Caller is required. This means that the
structural view contains a class that has to be hidden from the view and the
weaver has to ignore it.

The lifeline representing the caller was introduced in order to allow default
instantiations to be defined for the caller of a message. As we described
in Section 3.2, the default instantiations allow to restrict when a defined
message view applies. For example, the caller could be restricted to a certain
class or instance. This would be used for aspect message views, such that the
pointcut not only matches if a certain operation is called. The additional
restriction would enforce the advice to only be applied when the specified
default instantiations match. In analyzing all existing RAM aspects, we
noticed that the default instantiations are never set to any other than the
default values, e.g., caller -> *, Caller -> *, target -> * , meaning that there
are no restrictions. They were used in older aspects based on an older version
of RAM. A concept of RAM is to define an aspect as general as possible, as
the aspect itself does not know where it will be applied or used. Thus, the
default instantiations should be specified by the modeler on the higher level,
i.e., the level where the aspect is instantiated. The modeler could restrict a
particular aspect message view to be applied only in certain circumstances.

As currently this concept is not used and uncertain if it will be necessary,
we decided to not integrate it into the meta-model. This resolves the issue
with the caller and facilitates the ability to model an unknown sender and
receiver of messages in a message view. UML uses formal gates in those cases
as Figure 3.1 illustrates. Figure 3.13 highlights the updated visualization of
message views.

3.4.5 Message

A Message defines communication between two lifelines in form of an op-
eration call. The messageSort allows to specify what kind of message it
is, i.e., a synchronous call, reply, create or delete message. The messages
signature is defined by the referenced operation. Each message has a send and
receive event defining what lifelines the message is connected between. An
event can either be a Gate or MessageOccurrenceSpecification respectively
DestructionOccurrenceSpecification. The return of an operation call can be
assigned to a StructuralFeature, which allows referring to an existing feature
of a class or a temporary property. Figure 3.10 presents the definition of
these concepts in the meta-model.

In case the called operation has parameters, arguments can be defined.
The UML meta-model has an ordered set of arguments where an argument
is defined by a ValueSpecification. A ValueSpecification specifies a value, e.g.,
literals like String or Integer or more complex expressions. The order of
arguments has to match the order of the operations parameters. Furthermore,
the syntax definition of a messages name allows to specify parameters. Our
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Operation

OccurrenceSpecification

MessageEnd InteractionFragment

- messageSort: MessageSort
Message

ParameterValueMapping

StructuralFeature

Parameter
MessageOccurrenceSpecification

DestructionOccurrenceSpecification

ValueSpecification

signature

sendEvent receiveEvent1 1

messagemessage 1 1

arguments0..*

assignTo
0..1

parameter 1

ParameterValue

value1

body: String
language: String

OpaqueExpressionLiteralSpecification

value: String
LiteralString

value: int
LiteralInteger

StructuralFeatureValue

parameter 1

1

Gate

value10..1returns

synchCall
createMessage
deleteMessage
reply

<<enum>>
MessageSort

Figure 3.10: The definition of a Message in the meta-model.

goal was to be able to clearly state formal parameters and their actual
parameters. Therefore we introduced a ParameterValueMapping that maps
a formal parameter to an actual value as illustrated in Figure 3.10. The
value is a ValueSpecification, however, we introduced a ParameterValue and
StructuralFeatureValue allowing to refer to existing values.

When using reply messages, a modeler needs the opportunity to specify
what exactly gets returned. Accordingly, a Message has an information
regarding what it returns. This information is a ValueSpecification as well
which allows to return properties of classes, temporary properties or specific
values.

3.4.6 InteractionFragments

InteractionFragments distinguish between occurrences on a lifeline and frag-
ments that are placed on a lifeline as Figure 3.1 depicts. As we described in
Section 3.4.5, the send and receive event of a message can be occurrences.

From the UML meta-model the only other fragment that is relevant
for message views are CombinedFragments, as mentioned in Section 3.1. A
CombinedFragment has an operator defining what kind it is. The current
supported operators are alt, opt, loop, critical and disruptable. In addition, a
CombinedFragment contains an ordered set of InteractionOperands. The order
is important, because executing one operand might lead to another operand
not being executed. In Section 3.4.2 we explained that an InteractionOperand
is a subtype of FragmentContainer, meaning that it contains an ordered
set of fragments. Additionally, each operand may contain a constraint that
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OccurrenceSpecification

InteractionFragment

MessageOccurrenceSpecification

- interactionOperator: InteractionOperatorKind
CombinedFragment

OriginalBehaviorExecution
InteractionOperand

DestructionOccurrenceSpecification

ValueSpecification

alt
opt
loop
critical
disruptable

<<enum>>
InteractionOperatorKind

1..*

ExecutionStatement

fragments {ordered}

specification
1

operand {ordered}
1..*

interactionConstraint 0..1

container1

FragmentContainer

Figure 3.11: The existing InteractionFragments in the meta-model.

defines under what circumstances it gets used. For all operators of combined
fragments—except critical—it is mandatory to specify a constraint. The
constraint is given as a ValueSpecification. It can be described as an opaque
expression as well, e.g., the constraint for a loop may be described in the
way of the programming language: Observer observer : observers or
int index = 0; index < size; index++. Figure 3.11 depicts all of the
InteractionFragments presented in this section.

Some specific features of RAM message views—which we described in
detail in Section 3.2—require their own specialization of InteractionFragment.
The OriginalBehaviorExecution represents the execution of the original
behavior of an operation which is visualized as a box containing a ’*’.
Execution of simple statements, like the initialization of a temporary variable,
can be done using ExecutionStatement. It contains its specification as a
ValueSpecification.

3.4.7 The Complete Message View Meta-Model

The complete message view meta-model containing all of the previously
explained parts is presented in Figure 3.12. Almost all elements that we
extracted from the UML meta-model were reused. The core of the UML
meta-model is shown in Figure 3.5. However, additional information was
added and the meta-model more restricted by making information mandatory
through the multiplicity constraints.

3.4.8 Visualizing Message Views

The changes that were introduced for defining message views lead to a
different visualization of message views. Furthermore, we proposed another
particular change as to how message views are visualized. Previously, the
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message view contains(|Associated a)

target: |Data
contains(a): boolean

mySet: Set<|Associated>

result := contains(a)
result

Figure 3.13: The updated visualization of message views using the example
of contains of the ZeroToMany aspect.

return of a message call was stated on the calling message as Figure 2.1
shows. In the given message view of contains the calling message states that
the result of the call is result. The purpose is to show that and what the
call to contains returns and it might be misleading, especially as the caller
was removed. However, a call can have several replies with different values.
Therefore we proposed to show the return type of an operation on the first
incoming message and the reply messages will show exactly what is returned.
Figure 3.13 highlights the different visualization with the proposed changes.
The caller lifeline and the default instantiations were removed.

3.5 Open Features

The main features of message views were integrated into the meta-model,
making it possible to model message views with a high level of detail. There
are more features that weren’t been integrated yet. These are either message
view or RAM related, but affect message views. We will discuss some of these
features in this section.

3.5.1 Message View Features

Message Views for Getter and Setter

Operations for getting and setting a structural feature of a class always have
the same behavior in most cases. A getter returns the structural feature
and the setter takes the parameter and overwrites the current value of the
structural feature with it. In current graphical diagrams of RAM aspects such
message views are just specified as getter and setter, however, we haven’t
integrated it into the meta-model yet. While it is possible to explicitly define
message views for them, doing so can be time consuming. In order to assist
a modeler in the best way, a corresponding tool could assist the modeler by
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offering to create the message view. Another option is to add this information
to the meta-model. A possible way on how this can be achieved is to specialize
MessageView with a type that represents getters and setters. Additionally
it would have an association to a StructuralFeature, denoting which feature
it returns or sets. However, when such a message view is extended with
behavior by an AspectMessageView, it is necessary to create an Interaction
for it with its specification in order to be able to weave additional behavior
into it. The corresponding tool or weaver could take care of that in order to
assist the modeler.

Throwing of Exceptions

When it comes to generating code, it is necessary to allow a modeler to
specify in which circumstances an exception is thrown, and what kind of
exception it is. UML has no notation to specify this in sequence diagrams.
With our meta-model it is possible to create a temporary variable of the
type of the exception to be thrown. A reply message could then return this
variable. The semantic meaning, however, wouldn’t be throwing an exception,
as the reply message specifies what a message returns. No difference would
be made between regular and exceptional execution paths. One could argue,
however, that it is part of the message interchange between objects. In terms
of generating code, the generator would be able to differentiate between
regular replies and throwing of exceptions in order to create the corresponding
source code.

Defining and Validating Complex Expressions

In certain situations it is required to define more complex expressions for
constraints of an InteractionOperand or when specifying statements to be
executed using an ExecutionStatement. When referring to variables or prop-
erties, only existing and reachable ones should be allowed to be referred to.
For example, as depicted in Figure 3.2, when looping through the set of
objects, two properties are contained in the constraint of the loop: o and
objects. Such constraints should be evaluated and validated in order to assist
a modeler allowing only the use of existing properties. This is an important
prerequisite for generating code.

3.5.2 RAM Features

Conflict Criteria

Combining several aspects might lead to conflicts between some of them.
This can occur when the aspects extend the same existing functionality and
might cause inconsistency in the semantically correct functionality [13]. RAM
contains so called conflict resolution aspects that allow to resolve these issues.
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A conflict resolution aspect has the same features as an aspect, i.e., it contains
the different views, but in addition, interference criteria can be specified
that defines in what situations the content of the conflict resolution will be
applied. Conflict resolution aspects are not integrated yet in the meta-model
of RAM. However, as they contain the same features as aspects, the existing
views can be reused. Only additional information like the interference criteria
has to be added.

Reusing Result of Original Behavior

In current RAM message views it is possible in an advice to specify at what
point the original behavior of the advised operation should be executed.
Reusing the return of the original behavior, however, is currently not sup-
ported. It is possible, however, to catch exceptions that are caused by the
original behavior by putting it inside a combined fragment using the operator
disruptable. AspectJ, for example, contains a special method proceed()

that can be called and the return be stored in a variable. The current concept
of the original behavior doesn’t facilitate the use of such a technique. Storing
a return value is currently done when calling a message by assigning it to a
property. Possible solutions could be the use of a special message kind or to
call the same operation and treat it specially. This concept has to be further
investigated in the future.

Parametrization

The ability to map an element from a lower-level aspect to more than one
element from the higher-level aspect leads to an interesting issue. This can
be illustrated using the StockExchange aspect from the example given in
Section 2.2.1, which depends on the Observer aspect (see Figure 2.2). If we
want to receive the update request for each information of Stock separately
instead, we would map |update to more than one operation. Such an example
is depicted in Figure 3.14 where Stock contains the operations setName and
setPrice that are mapped to |modify. The StockWindow contains updateName
and updatePrice, which are mapped to |update. This will lead to a problem as
the relation between the mapped operations |modify and |update is unclear.
When the advice of notification of the Observer aspect will be applied to
setName and setPrice it is unclear whether to call updateName or updatePrice.

A possible way of achieving this has been proposed in previous re-
search by parametrizing operations. In the given example, |modify would be
parametrized by |update. The notation is |modify<|update>. The mapping for
our example would then state |modify<|update> → setName<updateName>,
setPrice<updatePrice>. This ensures that when setName is called it is cer-
tain that updateName has to be called. The current meta-model doesn’t
support this yet. Before any changes will be made, more research has to be
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aspect StockExchange depends on Observer

structural view

~ Stock create(String name, int price)
~ String getName()
~ String setName()
~ setPrice(int price)
~ int getPrice()

- String name
- int price

Stock

~ StockWindow create(Stock s)
~ updateName(String name)
~ updatePrice(int price)
~ startObserving(Stock)
~ stopObserving()

 
StockWindow

Instantiations:
Observer: |Subject → Stock; |Observer → StockWindow; 

|modify → setPrice, setName; |update → updatePrice, updateName;

target: |Subject
|modify(..)

Pointcut

Advice

|modify(..)
target: |Subject

o: |Observer
|update(target)

 
                          observers := getObservers()

loop [o within observers]

* *

message view notification (from Observer)

Figure 3.14: The issue of parametrization illustrated using the example of
StockExchange.

done as other features regarding mappings have been discussed and should
be considered.

The operation |modify is very general returning any type and receiving
any number of parameters. This is denoted as ’. . . ’ inside the brackets of the
operations definition instead of specific parameters. The idea is to allow it
to be mapped to operations with parameters. We identified the following
features that include this and other features which should be supported:

� Supporting any number of parameters. Operations that may contain
any number of parameters are denoted as ’. . . ’ inside the brackets. Pa-
rameters can then be ignored or forwarded to another operation. In our
example, the parameters of |modify could be passed to |update. setName
would then pass the new name (parameter name) to updateName.

� Supporting any type of parameters. Parameters should be able to
have any type (denoted using ’*’). When an operation is mapped,
the parameter then has to be mapped to a parameter of the mapped
operation.

� Using one or several parameters. An operation can define specific
parameters (e.g., |m(String name, . . . )), and use the specific one and,
for example, pass the others to another operation.

� Support for introducing new parameters into operations. For example,
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this could be used for a constructor. When a class is extended with a
name, requiring the name to be given when the instance of this class is
constructed.

These features are only allowed for partial methods. Supporting such
features would offer a high flexibility to aspect modelers. In order to achieve
this, a potential solution is to specify grouped mappings such that when
mapping a container, its elements have to be mapped as well. For example,
when mapping |Subject, its operations have to be given in the same mapping.
As |modify itself is parametrized, a mapping has to be provided as well.

3.6 Facilitating future meta-model changes

In Model-Driven Engineering, models evolve during the development process.
We will discuss the issues that result from this in this section, however, no
solution has been implemented so far. This requires mechanisms to handle
future changes in order to facilitate easy adaption for components that build
on those models. As our meta-model is the foundation that other components
are built on, this is of high importance. Even if no components exist yet that
use the meta-model, instances of that meta-model that are created during
the modeling process have to be updated as well. Appropriate mechanisms
even facilitate changes in the future after a release of a software system.

During the development or modeling process of the meta-model, models
often exist locally or at least in one place (like a version control system),
and only people responsible for the development have access to them. In
that stage, a solution to the evolution problem is not necessarily required.
Changes to existing models that are not too complex can, for example, be
made with the stream editor sed—a Unix command-line utility.

However, this is tedious and error-prone. Furthermore, once models
are more wide-spread, e.g., when the software system is deployed, a more
sophisticated solution is required. Different solutions are possible to achieve
this:

� Transformations can be used to transform a model to a different model
based on another meta-model. This can be used to migrate a model.
However, this can be time consuming and requires extensive transfor-
mations as the complete model has to be transformed to a new instance,
meaning that actions have to be performed for elements that weren’t
changed.

� The Eclipse Modeling Framework (EMF) provides an approach3

where, when loading an instance based on an old version of the meta-
model, adjustments will be performed in order to transform it into a
model compatible with the new version of the meta-model. This allows

3See http://wiki.eclipse.org/EMF/Recipes#Recipe: Data Migration

http://wiki.eclipse.org/EMF/Recipes#Recipe:_Data_Migration
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a seamless process for the user who is still able to open old models
without any interruption or having to explicitly import it.

� A project compatible with EMF called Edapt4 allows to record the
changes being done to a meta-model. Additional code can be specified
for complex changes in the structure. A component for migrating models
can be generated in order to use it in an application.

A well-defined and well thought of meta-model is crucial, as it is the
foundation of a modeling notation and therefore changes to it affect a whole
range of components or tools. However, it can be necessary in some cases to
perform changes. Additionally, changes shouldn’t be prevented because the
effects have a large impact. The options mentioned above assist in keeping
old models compatible by migrating them.

4See http://www.eclipse.org/edapt

http://www.eclipse.org/edapt


Chapter 4

Message View Weaving

The defined meta-model facilitates the creation of aspect models with message
views. An important step for a modeler during the development process is
weaving. Weaving combines aspect models together to a final woven model
that has no dependencies. This final model can then be transformed into
an executable version, the final application. However, weaving is not only
important for the final application. It allows to assist a modeler during the
design process. A modeler is enabled to see the results of the composition
decisions made and correct them if they prove to be erroneous. Effects can
be examined and verified. This facilitates the identification of errors early in
the design process, which increases the quality of the software system.

Currently, it is possible to weave the structure of aspects and support for
weaving is integrated in TouchRAM. Weaving of message views has only
been done in theory. Before we will describe the formalization of the message
view weaving algorithm in this chapter, we will briefly explain how weaving
of structural views works. Understanding of this is essential, since weaving
message view builds on structural view weaving.

4.1 Weaving Structural Views

The existing weaver for structural views offers two different functions. It is
possible to weave a complete hierarchy, which we refer to as complete weave.
All aspects the highest level aspect directly and indirectly depends on are
woven into that aspect, resulting in an aspect without any dependencies. The
weaver supports hierarchies of arbitrary depth. When weaving completely, the
aspects are woven together in any order. Furthermore, a single weave weaves
two specific aspects that are directly dependent within a hierarchy together,
for example, when the modeler wants to see the result of applying an aspect
to another one. The single weave can be used as a basis for implementing
the complete weave: It is used to combine two directly related aspects, and
then applied again to weave another aspect into the result, and so on. This

39
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requires to update the instantiations, because an aspect woven into another
one might depend on other aspects. The mappings therefore have to be
updated.

Both of the weaving operations are based on the same algorithm. The
algorithm weaves two aspects together, i.e., a single weave is performed. One
aspect represents the base and the other the dependee. The dependee is the
aspect being instantiated by the base and is conceptually woven into it. For
the complete weave, this algorithm is executed until there are no instantiations
left in the base and an aspect with no dependencies is retrieved.

The following steps summarize the actions performed by the weaver when
weaving an aspect A into an aspect B :

1. Pre-process extends instantiations: Using extends, B can augment
the functionality of an aspect A on the same level of abstraction. In this
case, default mappings for all classes in A, where a class with the same
name in B exists, are created. For each class where such a mapping is
created, also all its operations are mapped. This leads to the classes
being merged in step 3.

2. Check for name clashes: In class diagrams, i.e., structural views,
class names must be unique, i.e., two classes having the same name are
not permitted. If such a case is detected, the weaving is aborted with
an exception requiring the modeler to resolve the conflict. The modeler
can either rename the class or provide a mapping, which leads to the
classes being merged in step 3. However, if there are two classes with
the same name representing the same design, they are identical and will
be merged. For example, in an aspect there could be two instantiations
for the ZeroToMany aspect described in Section 2.2.1. If |Associated is
mapped to the same class both times , this will result in two Set classes
that are identical, because they have the same type. Hence, only one
Set class is sufficient.

3. Weave: The mapped classes from A and B are merged. When merging
classes, all attributes, associations and information about super types
are merged by copying them from A into B. For operations, if they
are not mapped, they will be copied over as well. For classes with no
mapping, the class from A is copied into B, including the containing
elements. In this case, the visibility of operations is changed from public
to aspect-private to ensure encapsulation of lower-level details [1].

4. Update instantiations: Because it is possible to weave any two di-
rectly dependent aspects within a hierarchy together, it is necessary
to update instantiations at the end. For our given example in Sec-
tion 2.2.1, when weaving Observer into StockExchange, the mappings
of ZeroToMany in Observer have to be updated to now designate
model elements of StockExchange. The resulting mappings are shown
in Figure 4.1.
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aspect StockExchange depends on ZeroToMany

structural view

+ Stock create(String name, int price)
+ String getName()
+ String setName()
+ setPrice(int price)
+ int getPrice()
~ Set<StockWindow> getObservers()

- String name
- int price

Stock

+ StockWindow create(Stock s)
~ updateWindow(Stock s)
~ startObserving(Stock)
~ stopObserving()

 
StockWindow

Instantiations:
ZeroToMany: |Data → Stock; |Associated → StockWindow; 

getAssociated → getObservers

mySubject
 

0..1

Figure 4.1: The resulting structural view after weaving the Observer aspect
into StockExchange.

This yields the woven model A+B. When weaving completely, this woven
model is taken to continue the weaving process. The process is repeated until
there are no instantiations left. If only two aspects are woven together, the
modeler can inspect A + B and is able to weave other instantiations into
it. In Figure 2.4 we showed the resulting model after weaving all dependent
aspects into StockExchange. Figure 4.1 depicts the woven model when only
Observer is woven into StockExchange. The resulting aspect now depends on
ZeroToMany (as Observer depended on it). The mappings have been updated
such that now |Data maps to Stock and |Associated to StockWindow now.
The modeler would then be able to weave ZeroToMany into StockExchange
which would result in an aspect model equal to Figure 2.4, which is equivalent
to weaving StockExchange completely.

4.2 Message View Weaving Requirements

Weaving of message views is performed by weaving the advice of an aspect
message view into message views that have the aspect message view stated
as being affected by. An aspect message view is only woven if it is specified as
affected by. If it is not specified, the aspect message view will not be woven,
even if the pointcut matches. In RAM, elements are aware of what other
aspects or elements they are extended by. The advice of the aspect message
view is woven in at the point related to the original behavior. This can be
either before, after or around the original behavior.

The woven message views of the StockExchange example from Section 2.2.1
are shown in Figure 4.2. Message views that are not affected were omit-
ted for space reasons as they weren’t modified. The aspect message views
initializeAssociation and cleanupAssociation from ZeroToMany were woven
into create and destroy of Stock after their original behavior. notification of
Observer was woven into setName and setPrice of Stock after their original
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aspect StockExchange

setPrice(int price)
target: Stock

o: StockWindow
updateWindow(target)

 
                          observers := getObservers()

loop [o within observers]

add(StockWindow observer)
target: Stock

message view Stock.add

counter++

this.price = price

message view Stock.setPrice

message view Stock.setName was omitted for space reasons

target:
Stock

create(String name, int price)

mySet := create() mySet:
Set<|Associated>

mySet:
Set<StockWindow>

add(observer)

           setName(name)

          setPrice(price)

message view Stock.create

message view Stock.remove was omitted for space reasons

message view Stock.destroy

target: Stock
destroy()

delete()

mySet:
Set<StockWindow>

Figure 4.2: Some of the message views of the StockExchange aspect after
weaving.

behavior.
However, the weaving of message views cannot be done in the same way

as weaving structural views where the order is not important and any two
directly dependent aspects in a hierarchy can be woven together. To illustrate
why this is not possible we will extend our StockExchange example from
Section 2.2.1. Let us consider that we want to know how often objects are
added and removed from the association provided by the ZeroToMany aspect.
In the context of the example this means that we want to know the amount
of StockWindows added or removed to a Stock, i.e., the calls made to add
and remove. Therefore, we create an aspect that extends the functionality of
ZeroToMany, adding a counter to |Data and modifying the behavior of add
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aspect ModifyCounter depends on ZeroToMany

structural view

 
- int counter

|Data

 
 

|Associated

Instantiations:
ZeroToMany: |Data → |Data; |Associated → |Associated

target: |Data
*

Pointcut

Advice

*

target: |Data

*
*

|Data
|Associated

message view remove affected by counter

message view add affected by counter

message view counter

counter++

Figure 4.3: The ModifyCounter aspect which extends the functionality of
ZeroToMany.

and remove to increment the counter. This is done by specifying an aspect
message view called counter and two message view references, one of each
referencing add and remove. counter is specified as affected by for both of
them. This aspect called ModifyCounter is highlighted in Figure 4.3.

We then instantiate ModifyCounter in StockExchange and map |Data to
Stock and |Associated to StockWindow. This will result in an aspect hierarchy
that is depicted in Figure 4.4. The hierarchy has a diamond-like structure.
create of StockWindow calls startObserving of |Observer which in turn calls
add of |Data. The same applies to stopObserving and remove respectively.
The add and remove being called should have the extended behavior provided
by the ModifyCounter aspect.

ZeroToMany

Observer

StockExchange

ModifyCounter

Figure 4.4: The dependency hierarchy of the extended StockExchange aspect.

Independent from the order of how the aspects are woven into each other,
if for each two aspects that are woven, the structural view and the message
views get woven, the weaver will have a conflict at the end. If this is done,
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before ModifyCounter and Observer are woven into StockExchange, there
will be two add and remove operations coming from each of them. The
operations in ModifyCounter contain the advice that was woven in from
counter, whereas the operations in Observer have their original behavior
defined in ZeroToMany. The weaver has the conflict of which message view
to choose that will be part of StockExchange and added to Stock. For our
example this could be resolved by merging the two message views. This would
require comparing them and figuring out the different parts of the message
views in order to find the correct composition of both. While this might
work for our example, it gets more and more complex for more sophisticated
message views.

Therefore, the message view weaving defined in theory specifies that it is
performed different to the weaving of structural views. When weaving two
directly dependent aspects together, all message views simple are copied
from the lower-level aspect to the higher-level aspect. At the end, when there
are no dependencies left in the highest level aspect, all message views are
woven. The weaving of message views takes place only once. For complex
message views this also allows better performance, as no conflict resolution
is required.

This requires to weave aspects in a depth-first order by beginning to weave
the lowest-level aspect first and moving up. In our example, ZeroToMany
would first be woven into Observer and ModifyCounter before weaving
them into StockExchange. Furthermore, the same functions of the structural
weaving have to be supported. Weaving a complete hierarchy (complete
weave) and weaving two directly dependent aspects in a hierarchy together
(single weave).

4.3 Formalizing Weaving

The requirement of copying message views and only weaving them once splits
the weaving process into two phases. The first phase is done for each two
directly dependent aspects A and B that are woven together. After weaving
the structural view from A into B, all message views of A will be copied
into B. Following that, in phase two all aspect message views are woven
into the message views that are affected by that aspect message view. When
the modeler decides to perform a single weave, only phase one is performed.
This defines the functions of the overall weaving process which includes the
structural view, message views and state views. However, state views are
not integrated yet. The main functions of the weaver and the two phases of
message view weaving are described in more detail as follows.

A single weave weaves an aspect A into an aspect B. As both aspects are
directly dependent in a hierarchy, this means that B instantiated A to reuse
its functionality. Therefore, an instantiation for A exists in B, additionally
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describing mappings. The formal algorithm for a single weave is defined in
Algorithm 4.1. First, the structural view is woven as described in Section 4.1.
The formal algorithm for weaving structure is beyond the scope of this thesis.

Algorithm 4.1: Weaving two directly dependent aspects together (single
weave)

Precondition: instantiation must be an instantiation contained by aspect

1: function weaveSingle(aspect, instantiation)
2: WeaveStructuralView(aspect, instantiation)
3: weavingInfo← weaving information of structural view weaving
4: lowerLevelAspect← aspect of instantiation
5: CopyMessageViews(aspect, lowerLevelAspect, weavingInfo)
6: return aspect
7: end function

In order to be able to correctly copy message views in phase one, in-
formation from the structural weaving process is required. In Section 4.3.1
we explain the details of copying message views and why this information
is important. The weaver performing the structural view weaving has the
knowledge of what element of an aspect A is now which element in B. When
mappings are specified, the element from A gets merged with the element in
B. Otherwise the element from A gets copied into B. In order to have this
information available, the weaving of structural views has to be extended and
the information added. We call this the weaving information. It is provided in
form of a mapping, mapping from the element in A to a set of elements in B.
The set of elements is necessary because an element can be mapped to more
than one element. An aspect where this is required is StockExchange, which
is shown in Figure 2.3. |modify is mapped to setName and setPrice. The
mapping will therefore look as follows: |modify → {setName, setPrice}.
After weaving the structure, the weaving information is retrieved and used
when message views are copied in Line 5.

When performing a complete weave for a higher-level aspect C, the
complete hierarchy of C is woven into C. Aspects are woven in depth-first
order, meaning that the weaver starts with the lowest-level aspect in the
hierarchy weaving it into its instantiator. This is considered a single weave as
two directly dependent aspects in a hierarchy are woven together. Resolving
all dependencies is highlighted in Algorithm 4.2. Beginning from the highest-
level aspect C, all instantiations are woven into it. In Line 8 the single weave
is executed for those two aspects. This is only done once the instantiated
aspect has no instantiations itself, i.e., is independent. If an instantiated
aspect has instantiations, the dependencies of that aspect are resolved first. In
Line 6 the algorithm is calling itself recursively to facilitate this. As explained
in Section 4.1, this process is repeated until no instantiations are left, i.e.,
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each aspect the single weave algorithm is executed for is independent. The
result is an independent aspect.

Algorithm 4.2: Resolving all dependencies of an aspect recursively

Postcondition: aspect has no dependencies

1: function ResolveDependencies(aspect)
2: while instantiations of aspect 6= empty do
3: for all instantiation ∈ instantiations of aspect do
4: lowerLevelAspect← aspect of instantiation
5: if instantiations of lowerLevelAspect 6= empty then
6: ResolveDependencies(lowerLevelAspect) . call recursively
7: else
8: WeaveSingle(aspect, instantiation)
9: end if

10: end for
11: end while
12: end function

Algorithm 4.3 shows the definition of the complete weave. Phase one is
performed in Line 2 by resolving all dependencies, weaving the structure
and copying all message views into this aspect. After all dependencies are
resolved, phase two is executed in Line 3 by weaving all message views. The
details of how message views are woven are described in Section 4.3.2.

Algorithm 4.3: Weaving an aspect completely (complete weave)

Postcondition: completely woven aspect with no dependencies

1: function WeaveComplete(aspect)
2: ResolveDependencies(aspect)
3: WeaveMessageViews(aspect)
4: return aspect
5: end function

4.3.1 Copying Message Views

Copying all message views from A (lower-level aspect) into B (higher-level
aspect) requires additional steps for different cases. The steps are formally
described in Algorithm 4.4.

� A message view reference references a message view from A and specifies
what aspect message views it is extended (i.e., affected) by. When
copying the message views to B, both message view and message view
reference are on the same level. Therefore, the affected by information of
the message view reference can be added to the referenced message view
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Algorithm 4.4: Copying message views from the lower-level to the higher-
level aspect

Precondition: base (higher-level) is aspect instantiating dependee (lower-level)
Precondition: weavingInfo contains the mapping of woven elements from the

structural view weaving

1: function CopyMessageViews(base, dependee, weavingInfo)
2: for all message view type mv ∈ dependee do

. handle message view duplicates
3: if message view emv specifying the same operation as mv

exists in base then
4: emv[affectedBy] ← emv[affectedBy] ∪ mv[affectedBy]

. handle mapped operations
5: else if specified operation op of mv was woven and
6: mv[affectedBy] 6= empty then
7: for all woven operations wop ∈ weavingInfo[op] do
8: if message view emv for wop exists in base then
9: emv[affectedBy] ←

emv[affectedBy] ∪ mv[affectedBy]
10: end if
11: end for
12: else
13: copy mv to base
14: end if
15: end for

. handle message view references
16: for all message view references mvr ∈ base do
17: if referenced message view mv of mvr exists in base then
18: mv[affectedBy] ← mv[affectedBy] ∪ mvr[affectedBy]
19: remove mvr from base
20: end if
21: end for

. update references
22: for all message views mv ∈ base do
23: update references of mv and all its elements
24: end for
25: end function

itself, and the message view reference deleted. This step is performed
in Line 16–21.

� Mappings for operations are provided in general for partial operations
(from the lower-level aspect)—but can also be defined for non-partial
operations. Partial operations don’t require to have a message view,
unless they are extended by an aspect message view. In such a case,
there is an empty message view with affected by information specified.
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In the higher-level aspect there exists a message view since the partial
operation has to be mapped. This would result in two message views in
B. Therefore, this case is handled in Line 5–11 by adding the affected
by information of the message view from A to the message view of B,
which has a specification. Furthermore, this has to be conducted for all
message views that specify the mapped operations, as an operation can
be mapped to more than one operation. In the StockExchange example
depicted in Figure 2.3, this has to be done for the operations setName
and setPrice. The affected by information of |modify is added to both of
their message views. The message view from A is not required anymore
and not copied to B.

� In case an operation is coming from more than one lower-level aspect
and is added to the same class, this results in two message views being
added. In our example add is woven twice into Stock. The first time
coming from ModifyCounter and the second time from Observer. The
operation is, however, only added once to Stock, as the structural
weaver recognizes that the same method already exists, i.e., it has the
same signature. However, this results in two message views. Because
the message views are only copied and not woven, they have the same
specification, but their information on what aspect message views they
are extended by might differ. Therefore, the affected by information
of the message view from A is added to the already existing message
view in B. This step is handled in Line 3–4. The message view from
A, however, still references the operation of a class in A. The new
operation can be retrieved from the weaving information. In order to
know if there is an existing message view, it is necessary to compare
specified operations of existing message views with the woven operation.
The message view from A is not required anymore and not copied to B.

After the message views were copied and the additional steps performed,
certain references have to be updated in the message views. This step is
performed in Line 22–24 of Algorithm 4.4.

Updating References

The meta-model of message views contains references to elements of the
structural view. When copying a message view from the lower-level aspect
A to the higher-level aspect B, the references still point to the elements in
A. Therefore, it is necessary to update these references. This has to be done
for all elements in the structural view. The elements that are referenced are
described in the definition of the meta-model in Section 3.4. For example,
when weaving ZeroToMany into Observer, the class |Data gets merged with
|Subject. The message view for add of |Data references this class in the
property represents of the lifeline representing |Data. This lifeline receives
the call to add. Furthermore, the reference to add points to the operation of
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the class contained in the structural view of ZeroToMany. All these references
have to be updated after copying the message view to the higher-level aspect.

As described in the beginning of this section, when weaving the structural
view the knowledge of what element in A is now which element in B is kept
in the weaving information. Therefore, when updating references, for each
affected element it just has to be checked whether the current referenced
element is contained in the mapping as a key. If so, it will be replaced by the
value of the mapping. An example of how this is done for a message view
is described in Algorithm 4.5. A special case exists when an operation was
mapped more than once, e.g., |modify in StockExchange. In the corresponding
aspect message view called notification, the operation referenced as the
pointcut and in the message in the advice is |modify. However, as we will
explain in the following section, those references are not required when
weaving the advice into a message view and it is therefore not required to
update them. A possible resolution is to duplicate the aspect message view in
order to have one for each affected message view. This then allows to update
the references of pointcut and the message in advice for each aspect message
view.

Algorithm 4.5: Copying message views from the lower-level to the higher-
level aspect

mv ← message view of type MessageView

1: if weavingInfo[mv[specifies]] 6= empty then
2: mv[specifies] ← weavingInfo[mv[specifies]]
3: end if

4.3.2 Weaving

Once the preliminary work is done, all message views are contained in the
highest-level aspect. Only message views and aspect message views exist
at this point. It is then possible to compose these together by weaving the
advice into the affected message views. The formal procedure is described in
Algorithm 4.6. In order to do that, the weaver looks at all message views and
their affected by information. Each advice of the specified aspect message view
that affects a message view is then woven into the message view in Line 8.
This process is simple because message views only contain synchronous
messages. Only one message is possible at a time and messages are executed
consecutively. Therefore, deterministic weaving is possible. In Section 4.4 we
describe an approach that supports asynchronous messages as well and how
those can be woven.

Before the weaving can take place, a special case has to be handled.
When an aspect with partial classes and operations is woven completely,
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Algorithm 4.6: Weaving all message views of an aspect

Precondition: structurally woven aspect with no dependencies

1: function WeaveMessageViews(aspect)
2: for all message views mv ∈ base do
3: if mv[affectedBy] 6= empty then
4: for all aspect message views amv ∈ mv[affectedBy] do
5: if mv has no specification then
6: create initial specification using advice of amv
7: end if
8: WeaveMessageView(mv, amv)
9: mv[affectedBy] ← mv[affectedBy] \ {amv}

10: end for
11: end if
12: end for
13: for all aspect message views amv ∈ base do
14: remove amv from base
15: end for
16: end function

some operations might have no specification. This is for example the case in
Observer. In ZeroToMany there is a message view for create (the constructor)
that is affected by initializeAssociation. |Subject in Observer has no create
specified. When ZeroToMany is woven into Observer there will be a message
view for create. However, it does not have a specification since it is partial.
Before anything can be woven into it, a specification has to be created with
the initial structure. This is handled in Line 5–7 of Algorithm 4.6. The initial
structure includes the incoming call, i.e., the message and the send (a Gate)
and receive events (a MessageOccurrenceSpecification), as well as the lifeline
for the class receiving the call. The information for those objects can be
taken from the aspect message view as this contains the same information.
The required objects can therefore be copied and added to the specification.

Inside an Interaction, the contained InteractionFragments are ordered.
Therefore, they define the total order of behavior in a message view, i.e., how
the message view is structured. The first fragment always is the receiving
event of the incoming message call. This is the operation whose behavior is
defined by the message view. As this fragment already exists in the message
view it can be ignored. The location where the advice gets woven in depends
on the position of the OriginalBehaviorExecution fragment. Figure 4.5 depicts
the following locations that are possible:

� The OriginalBehaviorExecution is located after the first fragment. This
means that the advice will get woven in after the original behavior.
Consequently all fragments have to be added after the last fragment of
the existing message view specification.
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target: Object
foobar()

Specification Advice

foobar()
target: Object

*

around
ms: Object

do()

do()

bar: Bar

doBar()

target: Object
foobar()

Specification Advice

foobar()
target: Object

after
ms: Object

bar: Bar

*

do()

doBar()

target: Object
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Specification Advice

foobar()
target: Object

*

before
ms: Object

do()
bar: Bar
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Figure 4.5: The different positions the advice can get woven in: After, before
or around the original behavior.

� The OriginalBehaviorExecution is located at the end. This means that
the advice will get woven in before the original behavior. All fragments
therefore have to be added after the first fragment.

� The OriginalBehaviorExecution is located in between. This means,
that the part of the advice before that fragment gets woven in before
the original behavior. The part of the advice after that fragment gets
woven in after the original behavior. Both cases are described above.

To handle this correctly, the weaver keeps track of the index in the list of
fragments where the next fragment will be inserted. The index starts after
the first fragment. The formal procedure is defined in Algorithm 4.7.

When the advice of an aspect message view (amv) is woven into a message
view (mv), the weaver performs the following steps for each fragment of the
advice of amv as specified in detail in Algorithm 4.7:

1. Each fragment of amv, except the OriginalBehaviorExecution and the
first one, is copied and added into mv at the appropriate index in
Line 11. When the OriginalBehaviorExecution fragment is reached, the
index is set to the size of the set of fragments existent in mv in Line 7.
This way the next fragment will be added at the end.

2. The copied fragment has to be updated. Algorithm 4.8 formally de-
scribes the steps executed. Updating a fragment includes the references
to covered lifeline(s) and in case of MessageEnds the corresponding
message. In case the fragment is a CombinedFragment, this has to be
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Algorithm 4.7: Weaving an aspect message view into a message view

Precondition: mv has a specification

1: function WeaveMessageView(mv, amv)
2: nextIndex← 1
3: advice← advice of amv
4: weavingInfo← ∅ . keep information about woven elements
5: for all interaction fragments f ∈ advice[fragments] \ first fragment do
6: if f is original behavior fragment then
7: nextIndex← size of mv[fragments])
8: else
9: fc← copy of f

10: UpdateFragment(fc, weavingInfo)
11: mv[fragments][nextIndex] ← fc
12: nextIndex← nextIndex + 1
13: end if
14: end for
15: end function

performed for all fragments of the CombinedFragments operands as
well. As nested combined fragments can occur, the function of updating
a fragment is called recursively in Line 13 for each fragment of all
operands.

3. In Line 2–8 a check is performed whether the covered lifeline in amv
already exists in mv. A Lifeline already exists if there is a lifeline
with the same represents (a TypedElement). For example, the lifeline
receiving the first call represents an instance of the class that contains
the specified operation. If the lifeline doesn’t exist yet in mv a copy
of the lifeline from amv is created and added to mv. The fragments
covered reference is updated and the information about the old and
new lifeline kept for other fragments that cover the same lifeline. When
a lifeline already exists, the local properties of the old referenced lifeline
have to be copied to the existing lifeline.

4. In case the fragment is a MessageEnd, i.e., either a Gate or MessageOc-
currenceSpecification, the reference to the corresponding message is
updated in Line 17–23. As a message has a send and receive event, for
the first fragment of a message, the message does not exist yet in mv
and therefore has to be copied. When the second fragment is copied
from amv to mv, the message already exists and only the reference
has to be updated. Therefore the information about the old and new
message is kept as well.

5. At the end, the aspect message view is removed from the affected by
list.

After all message views were woven, all aspect message views are removed
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Algorithm 4.8: Updating an interaction fragment of a message view

Precondition: mv has a specification

1: function UpdateFragment(f , weavingInfo)
2: if covered lifeline of fc does exist in interaction then
3: copy local properties of old lifeline to existing one and add them to

weavingInfo
4: weavingInfo[oldLifeline] ← existing lifeline
5: else if covered lifeline of fc does not exist in weavingInfo then
6: copy lifeline and add it to interaction
7: weavingInfo[oldLifeline] ← copied lifeline
8: end if
9: update fc[covered] with existing or woven lifeline

10: if fc is CombinedFragment then
11: for all operands o ∈ fc[operands] do
12: for all interaction fragments of ∈ o[fragments] do
13: UpdateFragment(of , weavingInfo) . call recursively
14: end for
15: end for
16: end if
17: if fc is MessageEnd then
18: if fc[message] does not exist in weavingInfo then
19: copy message and add it to interaction
20: weavingInfo[oldMessage] ← copied message
21: end if
22: update fc[message] with woven message
23: end if
24: end function

in Line 13–15 of Algorithm 4.6. This leaves only message views at the end.

Order of Weaving

The order in which aspect message views are woven into a message view can
be of importance. Let us consider an application where a modeler wants
to integrate authentication and transactions. All calls to specific operations
are secured by requiring a user to be logged in. Furthermore, calls to those
operations should be made transactional. For this purpose, the modeler
reuses the existing aspects Authentication and Transaction, which provide
this functionality. Instead of starting a transaction and then checking the
authentication, the expected result is to have the authentication check before
a transaction is started. This depends on the order of how message views
are woven, i.e., the woven result could be the unwanted version.

A possible approach is to consider the level of an aspect in the hierarchy.
Functionality from lower-level aspects are woven in before functionality of
higher-level aspects. For this to be feasible it is necessary that affected
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by of message views are ordered. In Section 4.3.1 we described in what
circumstances and how the information of affected by is merged. However,
the information is not consistently added. For example, in the first case for
message view references, the message view from the lower-level is kept and
the information of the message view reference from the higher-level aspect
added to this message view. This already is correct behavior. In the second
case, however, the information of the lower-level message view is added to
the one in the higher-level aspect, since the lower-level one doesn’t have a
specification. In this case it is necessary to adjust the behavior by adding the
information at the beginning of the list. With the currently defined algorithm,
further aspect message views are added to the list of affected by at the end.
For the third case we defined that the existing message view is kept and the
affected by of the message view from the lower-level is added.

Let us consider, that in our extended stock exchange example from
Section 4.2, Observer extends add and/or remove of ZeroToMany as well. In
that case, how the affected by is merged depends on the order in which the
aspects are woven into StockExchange. Therefore, the order in which affected
by is merged cannot be defined at this point. Generally, this represents the
case in which two aspects are instantiated on the same level in a hierarchy.
In our example using Authentication and Transaction these aspects would be
instantiated on the same level. This requires a modeler to be able to specify
the order of instantiations. Therefore, we propose to have an ordered list of
instantiations and allow a modeler to order the instantiations in order to
facilitate this.

4.4 Related Work

In [14], Klein et al. propose new formal definitions of join points which make it
possible to detect pointcuts even when messages occur between the pointcut.
UML Sequence Diagrams are used to express behavioral scenarios. Pointcut
and advice are expressed by basic sequence diagrams (bSD), describing
finite scenarios. Using combined sequence diagrams (cSD), bSDs can be
composed using sequence, alt and the loop operator. Therefore, cSDs allow
to define more complex behavior. Unlike RAM, their approach allows to
use regular expressions in order to match many different messages in the
pointcut. Asynchronous messages are supported and therefore, the events of
the sequence diagrams are not totally ordered. A partial order is established
using event couples, specifying a preceding and a succeeding event.

Due to the possibility of using sequence diagrams with finite behavior as
a pointcut, a problem arises when weaving multiple aspects. If one aspect is
woven in, another pointcut might not be matched anymore as other messages
may occur between the messages specified in the pointcut. This happens if
a strict sequence of message has to be adhered to. Therefore, Klein et al.
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propose four different notions of join points:

� strict part is the most restrictive, enforcing a strict sequence of message
without being surrounded by another message or a message in between.

� general part is the least restrictive, allowing to be surrounded by a
message and messages in between.

� enclosed part is a variant of strict part which can be surrounded by a
message.

� safe part is a variant of general part where the order on the events
specified in a pointcut has to be preserved.

For each part they define a notion called is part of to determine whether
a bSD is part of another bSD. In order to allow messages in between or
surrounding messages, a morphism is used to map events from the pointcut
to the base scenario. This results in four strategies for detecting pointcuts to
overcome the issue of multiple aspect weaving.

In RAM, only synchronous messages are supported which prevents sur-
rounded messages. Furthermore, the pointcut is defined as one method being
called. The advice represents a sequence diagram, however, it can be of com-
plex nature as combined fragments (for alternatives, loops etc.) are allowed to
be used. When weaving multiple aspects, the problem of pointcuts not being
detected anymore does not occur in RAM since the one method call can
always be detected. Only if a method call would be removed completely by
one aspect such a problem could occur. The approach of Klein et al. consists
of a mechanism to prevent applying an advice within successive join points,
where parts of a join point are used in another one. In our approach this
is not necessary since it has to be possible to use the pointcut method for
multiple aspects.

Another approach of Klein et al. [15] presents a semantic based weaving
algorithm. It uses Hierarchical Message Sequence Charts (HMSC) which
are based on Message Sequence Charts (MSC). Similar to the previously
described approach, basic MSCs describe simple communications with finite
behavior. HMSCs allow the composition of basic MSCs with operators such
as sequence, alternative and loop. UML Sequence Diagrams (SD) and MSCs
are very similar as SDs are inspired by MSCs meaning that the approach
could be applied to SDs as well.

On the one hand, weaving can be performed on an abstract syntactic
level, where a specific pattern is searched for and replaced by the syntactic
definition of another behavior. On the other hand, it can be performed at
the semantic level, where the semantics of the description define what part
of a behavior is replaced with another behavior. Semantic weaving becomes
necessary when message calls cannot be detected as a strict sequence of
messages on the syntactic level, i.e., it doesn’t appear explicitly in a scenario.
This is required, for example, when loops are used and pointcuts that expand
across loop boundaries have to be detected.
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Therefore, they define a pointcut matching algorithm that allows to
match pointcuts across basic MSCs when they are sequentially composed.
A pointcut is detected within all executions of a scenario. This means that
loops are unfolded in order to match such pointcuts. Potential matches
are observed by studying started matches on longer executions. Through
unfolding, the obtained HMSC can then be woven with syntactic weaving.

This approach as well allows pointcuts that are represented as a scenario
of finite behavior without alternatives. As RAM does not use such pointcuts,
the issue of matching pointcuts semantically does not arise.

Furthermore, both approaches don’t support the notion of original be-
havior. The formal definitions of weaving replace the behavior matched by
the pointcut completely with the behavior of the advice. In case of behavior
being added, this requires to specify the same messages as in the pointcut
in the advice as well plus additional behavior. In our approach, only the
original behavior plus the additional behavior has to be specified.



Chapter 5

Message View Support For
TouchRAM

In Chapter 3 a meta-model was defined which, in addition to the structural
view, facilitates to model message views of aspects. Furthermore, in Chapter 4
weaving of message views was formalized. The previous steps now allow the
integration of modeling and weaving message views into TouchRAM, the
multi-touch enabled tool of the Reusable Aspect Models approach. At
the beginning, this chapter presents some brief background on the frameworks
used. Following, some insights into the definition of the meta-model, the
implementation of the formalized weaving algorithm and the implementa-
tion of visualization support in TouchRAM are given. Furthermore, the
chapter presents ideas for message view editing and suggestions on how the
architecture of TouchRAM can be improved and ends with related work.

5.1 Background

5.1.1 Eclipse Modeling Framework

The Eclipse Modeling Framework (EMF) [23] is an Eclipse project
offering a model-driven approach to create structured data models that
can be used within applications. It allows to define meta-models based
on Ecore, a subset of the Meta Object Facility (MOF) specified by the
Object Management Group (OMG) [19] and very close to Essential
MOF (EMOF). Ecore is similar to a class diagram of UML. An Ecore model
(i.e., an instance of Ecore) defines the meta-model of a desired data structure.
EMF provides a facility to produce different Java code from the defined
meta-model:

� The model code that represents the model defined in Ecore.

� edit code provides adapter classes that offer viewing and command-
based editing (e.g., for undo/redo) of the model.

57
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� A generic editor supporting the creation, viewing and editing of models.

� And test code allows the generation of test cases that can be further
extended.

The code is generated as Eclipse plug-ins facilitating to be used in
Eclipse applications, but can also be used in standalone Java applications.
Furthermore, EMF provides serialization in the XML Metadata Interchange
(XMI) format. The model-driven mechanism allows to modify the meta-
model at any time and re-generate code. Generated code can be modified
and marked in order for the generator to ignore when generating code again.

5.1.2 Kermeta

The Kermeta workbench [8] provides a meta-programming environment on
an object-oriented Domain Specific Language (DSL). Meta-model engineering
is facilitated by providing an object-oriented language including lambda
expressions similar to the Object Constraint Language (OCL). Kermeta is
offered as an Eclipse plug-in and has support for EMF. The key features
of Kermeta are aspect weaving and model transformation. Aspects can
be described to extend the functionality of existing models, e.g., elements
of an EMF-based model can be extended. Model transformations facilitate
transforming models to different instances of a meta-model or from one
meta-model to another. In TouchRAM, Kermeta was used to implement
the weaver of the structural view. Kermeta code can be compiled into Scala
code which runs in Java virtual machines, making it possible to integrate it
into any Java application. Furthermore, an interpreter is included, however,
it has a much longer execution time. During this thesis, a new version (2.0)
of Kermeta was released, which intends to provide better integration with
EMF as well as better performance.

5.1.3 Multitouch for Java (MT4j)

Multitouch for Java (MT4j) [27] is an open source Java framework
with a special focus on multi-touch. The framework supports creating visual
applications in 2D or 3D using OpenGL for software or hardware accelerated
graphics rendering. It is cross-platform compatible allowing to be run on the
latest Windows, Linux (Ubuntu) and Mac OSX versions. MT4j is designed
to support a wide range of input devices including multi-touch enabled ones.
Besides the latest multi-touch software and devices in consumer electronics,
such as Windows 7 and Apples multi-touch enabled trackpad, it supports the
TUIO (Tangible User Interface Objects) protocol. Furthermore, regular mouse
and keyboard can be used as well, and by providing an extensible event stack,
different input methods can be used at the same time. Additionally, MT4j
provides an extensible multi-touch gesture system with pre-defined common
gestures and pre-built multi-touch enabled user interface components.
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5.2 Overview of TouchRAM

An overview of the architecture of TouchRAM is presented in Figure 5.1.
TouchRAM consists of the frontend, i.e., the graphical user interface (GUI),
and the backend. The backend builds the base of the tool and contains the
RAM meta-model and RAM model weaver. The meta-model defines the
abstract syntax for RAM models and is defined using the Eclipse Modeling
Framework. The weaver is invoked by the GUI on command by the user and
performs the weaving process. It is implemented with Kermeta.

TouchRAM

MT4j

OCL

EMF

RAM meta-model

Weaver

Kermeta

Graphical User InterfaceRAM
components

Third-party
components

Java VM

Figure 5.1: The architecture of TouchRAM.

The GUI of TouchRAM is realized using MT4j. All other components,
however, are decoupled from the user interface (UI) based on a Model-View-
Controller design. Therefore, EMFs built-in notification mechanism is used
to observe the model and notify the user interface of any changes. The UI
components of MT4j were extended for TouchRAM in order to support the
developer. In particular, this includes layouts and a redefined event stack.

The current version of TouchRAM is capable of creating aspects with a
structural view and weaving the structural views of aspects. Figure 5.2 shows
TouchRAM and the visualization of the structural view of the StockExchange
aspect from Section 2.2.1.

5.3 Meta-Model in EMF

The RAM meta-model is defined as an Ecore model. This allows TouchRAM
to use the generated code as the base and to serialize RAM models in XMI.
While the definition of the meta-model in Ecore is straightforward as per
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Figure 5.2: The visualization of the structure of the StockExchange aspect
in TouchRAM.

the definition in Section 3, we will discuss some key points that the use of
EMF facilitates and an idea on how the overall architecture of TouchRAM
can be improved.

Using OCL The project Eclipse OCL [25] offers an implementation of the
OMG Object Constraint Language (OCL) for EMF-based models. OCL can
be used for constraints, derivation and operation bodies. When operations
are defined in Ecore, the code generator creates empty operation bodies
that the developer has to implement. This requires the modification of
generated code, which will be ignored by the generator in future iterations.
This can lead to errors when fundamental changes are made in a meta-model.
OCL can be directly integrated in Ecore models, and the generator creates
appropriate code. For message views, constraints were integrated which
allow to verify correct models. This is especially important after message
views were woven in order to check that the result is conforming. Besides,
defining operation bodies allows some helpful additions. For example, the
attribute name of primitive types should be consistent throughout models.
Therefore, the operation getName—which already exists through the super
type NamedElement—was defined for each primitive type. This results in
an overwritten getName operation. The operation body just describes the
return of the specific name. Furthermore, in Section 3.4.3 and 3.4.4 we
describe the addition of TypedElement to the structural view meta-model in
order to be used for lifelines. However, TypedElement does not contain the
type information, instead each sub type has its own. In order to be able to
retrieve the type of a typed element without having to consider the exact
type, we introduced getType to TypedElement. For Attribute, Reference and
Parameter this doesn’t require any changes, as they contain this method
(and now override it). Solely for AssociationEnd the operation body has to
be specified. In Section 3.4.4 we described that in this case the type is the
containing class of the opposite end.
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Command-based editing EMF.Edit—the part of EMF that the gen-
erated edit code uses—allows to use command-based editing to facilitate
fully automatic undo/redo functionality. Instead of modifying the model
elements directly by calling the appropriate setter methods, commands are
created and executed on a command stack. Therefore, we propose to use the
commands to be able to offer undo/redo to the modeler. The current version
of TouchRAM directly modifies the model, but as controller classes are
already used for most model manipulation this can be easily integrated.

Making use of adapter classes The generated edit code contains an
adapter class for each class in the meta-model. Adapters are required by
EMFs facility when using command-based editing. In addition, adapters
provide more functionality. An adapter, for example, provides a label provider
with the method getText to retrieve a textual representation of a given
object. Furthermore, an adapter contains property descriptors that are used
for viewing and modifying properties of an object. It provides a method
getChoiceOfValues that returns all possible choices that should be presented
to the user. Both methods can be modified in order to adjust it to desired
functionality. Therefore, we propose to make use of the provided functionality,
which will lead to a better separation of concerns, higher code quality and
make it easier for the developer to implement the user interface. Furthermore,
it allows to use different views. For example, the generated generic editor of
EMF could be used along TouchRAM as well. This supports the developer
during the development phase of the tool as it allows to create, view and
modify example models. To evaluate the feasibility we integrated this into
the message view visualization, which we describe in Section 5.5.

5.4 Integration of Message View Weaver

Previously the weaver only consisted of the structural weaver. The functions
of the structural weaver were called directly from within the tool. In Sec-
tion 4.3 we described the overall weaving process consisting of weaving the
structural view and message views. Therefore, we introduced a general weaver
RAMWeaver which is responsible for orchestrating the weaving process and
calling the StructuralViewWeaver and the MessageViewWeaver. Figure 5.3
depicts the overview of the weaver architecture. The architecture takes into
account that at some point in the future a weaver for state views will be
added. In that case, a class StateViewWeaver can be added and called from
within RAMWeaver.

As mentioned in Section 4.3, the structural weaver has to be extended with
the weaving information in order to keep the information of what element
of the lower-level aspect is (woven to) which element in the higher-level
aspect. The class WeavingInformation encapsulates a map from an object
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+ weaveAll(Aspect base): void
+ weaveSingle(Aspect base, Instantiation instantiation) : void
- resolveDependencies() : void

RAMWeaver
 

+ addWovenObject<T>(T old, T new) : void
+ getWovenObject<T>(T old) : T
+ getWovenObjects<T>(T old) : Set<T>
+ contains(Object object) : boolean
+ hasValue(Object object) : boolean

- wovenObjects : Map<Object, Set<Object>>
WeavingInformation

messageViewWeaver 1

1

weavingInformation

1

+ weaveSingle(Aspect base, Instantiation instantiation) : Aspect
 

StructuralViewWeaver

+ copyMessageViews(Aspect base, Aspect dependee) : 
void
+ weaveMessageViews(Aspect base) : void
- weaveMessageView(MessageView messageView, 
                  AspectMessageView aspectMessageView): void

 
MessageViewWeaver

structuralViewWeaver 1

weavingInformation 1

Figure 5.3: The structure of the weaver component.

to a set of objects. This information is stored in the StructuralViewWeaver
for all elements that are or get mapped. Whenever an element is cloned
and added to the higher-level aspect, this information is saved as well. The
weaving information is stored for two aspects that are woven together, i.e., a
single weave, and used when updating references in the first phase of copying
message views. For the second phase, i.e., weaving message views, a separate
weaving information is used to store woven elements of the message views.

5.4.1 Implementation Details

The implementation of the structural weaver was initially done with Ker-
meta 1.4. When implementing the message view weaver, we used the same
version at the beginning, but due to several issues it was necessary to migrate
to Kermeta 2, which was released during development time. The use of a
hash table in the form of Hashtable<Object, Sequence<Object>>, with a set
as the value, made it impossible to compile the weaver. Furthermore, copying
message views completely caused an unresolvable exception. Trying to use
Java code by reusing the EcoreUtil utility class of EMF wasn’t successful
as objects have to be transformed into special Kermeta objects. When just
adding a message view to another aspect, Kermeta removes the message view
from its original container. For example, this happens when using an aspect
multiple times, like ZeroToMany in the extended StockExchange example
from Section 4.2. With Kermeta 2 Java code can be called directly.
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Exploiting Aspect-Orientation

One feature of Kermeta is the ability of aspect-orientation. Aspects can
be defined for existing classes allowing to add new behavior or modifying
existing behavior. Aspects can be defined for classes of Kermeta as well. For
example, if an additional method is required for any object, an aspect class is
defined for Object. This support for aspect-orientation is used for updating all
references in message views in phase one. For all classes containing references
to elements of the structural view, an aspect is defined adding the method
updateReferences, which takes WeavingInformation as a parameter.

This method is first called on the message view types. Each type defines
its own method, updates its references and forwards the call to its children.
Listing 5.1 depicts the implementation of updateReferences for MessageView,
which delegates to its specification (Interaction) after updating the reference
to the specified operation.

aspect class MessageView
{

method updateReferences(weavingInformation : WeavingInformation) : Void is do
if (weavingInformation.contains(self.specifies)) then

self.specifies := weavingInformation.getWovenObject(self.specifies)
end

// specification can be null if it is an empty message view
if (not self.specification.isVoid()) then

self.specification.updateReferences(weavingInformation)
end

end
}

Listing 5.1: Updating references shown using the example of MessageView.

In order for the message view weaver to be able to call updateReferences
on any message view kind, an aspect is defined for AbstractMessageView as
well with an empty operation body. The same applies to InteractionFragment,
which allows calling the method on any of its sub types without knowing
what type it exactly is.

Additionally, when fragments are updated, a check is performed to find
any lifeline that already exists in the current message view. A lifeline is
defined by the element it represents. For this case, in the lifeline aspect class,
equals is overridden, taking into account whether the represented element is
equal as well.

The use of aspect-orientation allows to keep the responsibility to the
element itself, especially as they are aware of their own structure. It facilitates
clearer code as no utility classes are necessary. Furthermore, it increases
the maintainability. However, a developer has to be aware that additional
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behavior is introduced through aspects.

Updating fragments

When copying an InteractionFragment, the reference to the lifelines covered
is not copied. This is due to the association being bi-directional between
Lifeline and InteractionFragment, and the copier of EMF therefore does not
update the reference. This requires to keep the original fragment in order to
update covered accordingly.

To find an existing lifeline, the covered lifeline of the original fragment
is copied and updateReferences called on it. This updates the represents
reference and all local properties. Next, all existing lifelines are compared to
the updated lifeline to check whether this lifeline already exists. As described
in the previous section, equals of Lifeline was adjusted for this case. A special
case exists if the represented type is a Reference. Let us consider that the
aspect message view initializeAssociation of ZeroToMany (see Figure 2.1)
is woven into create of Stock (see Figure 2.3). In initializeAssociation, the
lifeline receiving the operation call is named new. The name results from a
Reference of type |Data with that name. Accordingly, the lifeline of create
of Stock is named target. Both lifelines represent the same lifeline when
StockExchange is woven, however, if comparing all properties of Reference
the weaver would not recognize this. Therefore, in case of a Reference all
properties except name are checked for equality. Due to this, equals is not
overwritten as this could lead to side-effects.

In case of a CombinedFragment, all contents are already copied, however,
fragments of all operands have to be updated as well. As covered of those
fragments is not set, the original fragments have to be looked at. Listing 5.2
shows how this is implemented. Using the index of the original element (In-
teractionOperand and InteractionFragment), the copied element is retrieved.
For each copied fragment, the method updateFragment to update a fragment
is called recursively. This at the same time allows to handle nested combined
fragments.

For each type of MessageEnd the message has to be updated. A message
has a send and receive event. Therefore, for the first occurrence, the message
has to be copied, its references updated and added to the interaction. It
is then added to the weaving information. When the second occurrence is
updated, the message from the weaving information is just taken and the
fragments message updated. Furthermore, a reply message has a Gate as its
receive event. As Gate is not an InteractionFragment it wasn’t copied before.
This is done explicitly at that point.
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if (fragment.isTypeOf(CombinedFragment)) then
var combinedFragment : CombinedFragment init fragment.asType(

CombinedFragment)

combinedFragment.operands.each { operand |
// get the copied operand that corresponds to the current operand
var operandCopy : InteractionOperand init fragmentCopy.asType(

CombinedFragment).operands.elementAt(combinedFragment.operands.
indexOf(operand))

// go through all fragments of the operand
operand.fragments.each { oldFragment |

// get the copied fragment that corresponds to the current fragment
var operandFragmentCopy : InteractionFragment init operandCopy.

fragments.elementAt(operand.fragments.indexOf(oldFragment))

// recursively call this operation as nested CombinedFragments are possible
updateFragment(weavingInformation, specification, oldFragment,

operandFragmentCopy)
}

}
end

Listing 5.2: Updating the covered property of all the contained fragments
for a CombinedFragment.

Testing

Weaving is a complex process and it is necessary to verify the correctness of
weaving results during the development phase. As described in Section 5.1.1,
constraints are used for the meta-model, making it possible to perform checks
during modeling. The woven model can then be checked in order to verify
that all constraints are still fulfilled. Kermeta supports the definition of unit
tests that can be run. This mechanism was used in order to define different
test cases that focus on different parts of the weaving process. Furthermore,
an approach used for testing the structural weaver is to model the expected
results of the weaving and compare it with the actual weaving result. This
can be done either manually using tools that allow comparing or integrated
into a test case. However, more research is necessary in order to find a
suitable solution. EMF provides tools to compare models and an evaluation
is necessary to find out whether this can be used as part of test cases.

5.5 Displaying Message Views in TouchRAM

The integration of the message view meta-model into the RAM meta-model
makes it possible to define RAM models with message views. While there is
no tool support yet, message views can be defined using the provided editor
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of EMF. The implementation and integration of the message view weaver
into the existing weaver enables integration of weaving into TouchRAM.
These preliminary works enable to implement the visualization of message
views in TouchRAM.

When displaying an aspect, only the structural view was shown previously.
Therefore, an additional button was introduced allowing the user to switch
between the structural view and message views. Switching hides the current
view and shows the other view. All message views are added to a container
which places the message views one below the other. This is sufficient for
viewing, but when editing message views is introduced a modeler might just
want to see the particular message view. The container furthermore allows
to pan the message views in case they don’t fit completely on the screen.
Panning is restricted to the y-axis.

For each element of a message view that has to be visualized, a view class
is specified. Each view is responsible for visualizing that particular element.
The container of an element is responsible for placing the element at the ap-
propriate position. One extension of TouchRAM for MT4j is the introduction
of layouts. Each view class inherits from RamRectangleComponent, which
is an extension of the MT4j class MTComponent and offers some general
features such as automatic child resizing and handling of events. Currently,
horizontal and vertical layouts are defined that place the elements either
in a column vertically or a row horizontally. The layouts additionally take
care of the size of elements. However, message views cannot make use of
those layouts as elements have to be placed differently and might overlap
each other. This requires to set the width and height of an element explicitly.
In the future, a special layout should be implemented which takes care of
that, because setting the width and height at creation time can be difficult.
Often the width of the parent or the width of children has to be considered.
This information is available once the element is added to a container. In the
current architecture, components (views) are built in the constructor. For
some views it was necessary to move it to a separate build method, which is
called after the component is added to its containing component.

The views InteractionView for Interactions and InteractionOperandView
for InteractionOperands both share behavior as both of them are containers of
fragments. However, the InteractionView is responsible for building elements
in the view. Therefore, InteractionOperandView delegates the responsibility
for building its contents to the InteractionView.

Elements like messages and lifelines are placed by adding some extra
space to the position of the latest added element. Fragments use the position
of messages. The sending and receiving ends of a message are not visualized,
however.

When visualizing an aspect message view, the content is split between
pointcut and advice. As a pointcut just refers to an operation, an Interaction
is created based on the operation and the advice. This allows to visualize
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Figure 5.4: The visualization of message views in TouchRAM using the
example of the woven StockExchange aspect.

the pointcut and the visualization of an Interaction is reused.
Figure 5.4 shows the visualization of message views in TouchRAM. Note

that all the textual representations of elements are retrieved from the adapter
classes (item providers).

5.5.1 Using adapters in TouchRAM

As described in Section 5.3, one goal of the visualization was to integrate the
capabilities EMF.Edit offers. The first step is to adjust the getText method of
the item provider in order to receive the appropriate textual representation of
an element. Listing 5.3 shows the definition of getText for the item provider
of a MessageView (MessageViewItemProvider). In order for the generator
to not modify a modified part of source code, the annotation generated

can be extended by NOT as defined in Line 5. The textual representation for
the specified operation is received by delegating it to the item provider of
the operation in Line 15, thus reusing other item providers. The method
returns the label, i.e., the operations textual representation, after the name
of the type in Line 20. The type name is not omitted in order to ensure
compatibility with the generated editor. The generated editor provides a
generic tree with the contents of the model. If the type name is not shown in
front of an element it is difficult for a user to distinguish between different
element types. When used in TouchRAM, the type name is simply stripped
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before shown in the user interface.

1 /**
2 * This returns the label text for the adapted class.
3 * <!−− begin−user−doc −−>
4 * <!−− end−user−doc −−>
5 * @generated NOT
6 */
7 @Override
8 public String getText(Object object) {
9 MessageView messageView = (MessageView) object;

10

11 String label = null;
12 Operation operation = messageView.getSpecifies();
13

14 if (operation != null) {
15 label = RamEcoreUtil.getTextFor(getAdapterFactory(), operation);
16 }
17

18 return label == null || label.length() == 0 ?
19 getString("_UI_MessageView_type") :
20 getString("_UI_MessageView_type") + " " + label;
21 }

Listing 5.3: The modified getText method of MessageViewItemProvider in
order to include the specified operation of a message view.

An item provider provides several different features, one of them being
the label provider. It can be obtained by calling adapt on the AdapterFactory.
In Line 15 of Listing 5.3 this is delegated to RamEcoreUtil which provides
this functionality. This functionality is defined in Listing 5.4. The method
stripTypeName simply strips the type name of the given object.

1 public static String getTextFor(AdapterFactory adapterFactory, EObject eObject)
{

2 IItemLabelProvider itemProvider = (IItemLabelProvider) adapterFactory.adapt(
eObject, IItemLabelProvider.class);

3

4 return stripTypeName(eObject, itemProvider.getText(eObject));
5 }

Listing 5.4: The implementation of getTextFor for receiving the textual
representation of an object using the adapter class.

In order to use these features in a standalone application like TouchRAM,
the generated edit code must be available. For each aspect, an adapter factory
instance has to be created as shown in Listing 5.5.
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1 // Create an adapter factory that yields item providers.
2 adapterFactory = new ComposedAdapterFactory(ComposedAdapterFactory.

Descriptor.Registry.INSTANCE);
3

4 adapterFactory.addAdapterFactory(new RamItemProviderAdapterFactory());
5 }

Listing 5.5: The initialization of the adapter factory for an aspect.

Displaying Text

The component RamTextComponent is available to display text in the user
interface. This component extends RamRectangleComponent and offers text
displaying capabilities such as alignment, modification using a keyboard
and a cursor. In order to exploit the possibilities that the item providers
offer, we introduced a labeled text component LabeledRamTextComponent.
Instead of setting the text directly, it has a reference to the object that a
text should be displayed for. The text is retrieved via the item provider
of that object. Furthermore, the component observes the object to receive
updates and if notified, updates its text. [24] describes how notifications
can be received for customized textual representations that depend on other
objects or properties.

Future Enhancements

The capabilities could be further enhanced. Each item provider further has
property descriptors for all the properties. For example, the item provider of
a Message View contains a property descriptor for the specified operation
(specifies). A property descriptor is responsible for viewing and updating
a property. Therefore, it contains a label provider as well. For a better
understanding, let us consider that we want to show a class name and be
able to update its name. When showing the class name, we want to see the
full name including partial. However, when editing the class name we just
want to see the name without any additional information. For the former, the
item provider can be used to get the textual representation. For the latter,
the property descriptor can be used to get the actual value of the property
and allow to update it. The label provider of the property descriptor can
be modified as well in case it has to be different than the item provider of
the object. Furthermore, this can be used with commands, meaning that for
setting a value a command is executed.

When setting properties that are a reference, the designer is required to
select a value. A property descriptor defines the method getChoiceOfValues.
This method can be overwritten in order to filter out unwanted choices. The
designer can then be provided with a choice in the style of a drop-down box.

By exploiting these capabilities, this information is separated from the
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user interface component allowing other user interfaces to use the same. This
results in a consistent visualization throughout applications. For example, in
our case—once our proposal is integrated throughout TouchRAM—models
can be modified either by using the TouchRAM user interface or the generic
editor provided by EMF. Furthermore, by separating the concerns properly,
changing the framework for the GUI only requires to replace GUI related
components. In addition, components like LabeledRamTextComponent can
be defined that retrieve their information by delegating to other objects or
adapters. This makes it easier for a developer and results in GUI code that
is clearer and easier to maintain, leading to better code quality.

5.6 Streamlined Message View Editing

Currently, message views can be viewed in TouchRAM, but not created or
modified. Thus, we give an outlook on how the tool can offer streamlined
editing in order to support a modeler for rapid, easy and intuitive creation
of message views. UML tools offer various possibilities for the user and often
focus mostly on the visual aspects. In RAM, the focus lies on the design of
aspects with a high emphasis on conformance to the meta-model in order to
support weaving and—later—code generation. Let us consider the use case
where a modeler created the structural view and wants to create the message
view for a particular operation.

Creating a new message view When creating a new message view, the
tool can create the initial interaction, i.e., including the incoming message, the
receiving lifeline and—if the operation returns something—a reply message.
When creating a new aspect message view, the fragment for original behavior
can be placed on the lifeline such that the modeler just has to move it to the
appropriate position.

Adding new messages While it is unclear at this point how exactly
messages will be created by the user, the tool can assist the user by displaying
possible lifelines where a message can be sent to. The possible lifelines can
be retrieved by the properties of the represented classifier of the sending
lifeline, local properties of that lifeline or through mappings. For example,
when modeling message views for the Observer aspect, |Data of ZeroToMany
is mapped to |Subject. This means that properties of |Data are available as
well. An alternative could be to let the user specify the operation that should
be called and then creating the lifeline and message for the user.

Selecting an operation The possible signature of a message is defined by
the lifeline that receives the call. Therefore, the user can be presented with
the operations of the represented classifier, but also operations that become
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available through mappings. For example, when defining startObserving of
|Observer, calls to |Subject can include operations of |Data as it is mapped
to |Subject.

Consistency checks The tool can perform consistency checks and inform
the user or even suggest changes. For example, when specifying that a certain
operation is affected by a particular aspect message view the tool can check
whether the aspect message views pointcut matches.

5.7 Related Work

To the best of our knowledge, TouchRAM is currently the only aspect-oriented
modeling tool supporting aspect hierarchies. Unfortunately we were not able
to verify that claim since the other existing AOM tools that can be used for
software design are not readily available for the general public.

Among the tools is the Motorola WEAVR [4], a tool developed and
used in an industrial setting. It focuses on MDE with aspect-orientation using
an aspect-oriented modeling engine for UML 2.0 state diagrams. WEAVR
is an add-in for Telelogic TAU. Detailed models with regard to code
generation are described using composite-structure architecture diagrams—
defining a hierarchical decomposition of a system—and transition-oriented
state diagrams—defining detailed behavior. An action language is used for
the complete implementation at the model level. A profile for UML 2.0 is
used to define aspect models which crosscut certain classes. The designer
is supported by a join point visualization engine to visualize and simulate
effects of an aspect on a model. Pointcut and advice are expressed by state
diagrams. The weaving is then performed right before the code generation.

MATA (Modeling Aspects Using a Transformation Approach) [28] tackles
join point matching problems by viewing aspect composition as a special
case of model transformations. It is an asymmetric approach where base
and aspect are composed by specifying a graph rule. Instead of defining
transformations on the meta-level—over the abstract syntax of a modeling
language—MATA uses graph rules over the concrete syntax of the modeling
language. MATA supports the UML meta-model which can be represented
as a graph. It is provided as a plug-in for IBMs Rational Software
Modeler. Class, sequence and state diagrams are supported, however, the
authors claim it can be applied to any modeling language with a well-defined
meta-model. In contrast to RAM, pointcut and advice are specified in one
diagram. Furthermore, no join points exist, as the composition is viewed as
a special case of model transformation.

The theme approach Theme/UML [3] was initially developed as a
MOF-based extension for UML 1.3. Carton et al. [2] then defined a process
based on Model-Driven Architecture (MDA) combined with the aspect-
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oriented Theme/UML approach. Theme/UML is an extension to UML as
a profile and can be used with any standard UML tool. It supports class and
sequence diagrams. The design process consists of the modeling, composition
and transformation phase. The modeling phase consists of modeling base
application concerns and crosscutting concerns. Through the definition of
composition relationships a designer specifies how they are composed. Models
are then automatically composed using transformations. The transformation
phase transforms the platform-independent model (PIM) into a platform-
specific model (PSM). The PSM can be further re-factored with low-level
details by the designer before code is generated. However, the use of UML
2.1 is unsuitable for code generation of sequence diagrams.



Chapter 6

Conclusions And Future
Work

This thesis presented the transformation of message views of the Reusable
Aspect Models approach in theory to message views in practice in order to
enable tool support of message views. Therefore, we evaluated the different
features of message views that were used in theory and defined a meta-model
that suits these requirements. In order to facilitate a compatibility with
other UML tools we based our meta-model on the UML meta-model of
sequence diagrams and extended it with a higher level of detail. A high
emphasis was set on defining a consistent meta-model. This proved to be
of importance in order to facilitate the various requirements at later stages.
The existing meta-model for structural views had to be extended as well.
Furthermore, certain features were found not necessary and omitted and
suggestions were made on how message views can be visualized in a clearer
way for the designer. In addition, open issues were discussed and possible
solutions presented. Defining message views is facilitated for almost all cases,
despite the message view related open issues.

The weaving of message views was prior defined in theory as well. We
formalized the weaving algorithm and integrated both the weaving of struc-
tural view and message views into a general weaving process. This weaving
process is prepared to be extended by state view weaving. The weaver allows
a designer to weave a complete aspect hierarchy or two directly dependent
aspects in a hierarchy together.

Definition of the meta-model and weaver facilitated the integration of
message view support into TouchRAM. The meta-model was defined using
the Eclipse Modeling Framework and the weaver implemented with the
Kermeta framework. Furthermore, the graphical user interface of TouchRAM
was extended by message view visualization, allowing a designer to view
existent message views. In addition, we proposed several ways on how the
architecture of TouchRAM can be improved by using features provided by

73
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EMF. These include the use of adapter classes for retrieving the textual
representation of elements, command-based editing for fully automatic undo
and redo functionality and editing support using property descriptors of
adapter classes. This will lead to a better separation of concerns by decoupling
the user interface from such responsibility tasks allowing to use different
views. In our case, the editor generated by EMF can already be used to fully
create message views that can then be visualized in TouchRAM. Furthermore,
the use of such features will allow a developer to focus on the design of the
UI and lead to a higher quality of code increasing the maintainability.

As a next step, creation and editing of message views can be added to
TouchRAM. In Section 5.6 we discussed some possibilities on how the tool
can offer streamlined editing of message views for a modeler. The aim is a
streamlined user interface that enables intuitive and fast model editing for
agile software design modeling. This allows a modeler to focus mainly on the
design of aspect models. Further future work should focus on integrating the
editing features provided by EMF into the whole application as outlined in
Section 5.5.1.

The support of state views is the last view of the multi-view modeling
approach RAM that is not supported yet. Future work should address the
integration of state view support. This thesis presented an approach on
how this can be achieved by evaluating the view defined in theory and
defining a meta-model. Following, the weaving algorithm can be formalized
and TouchRAM extended by support for state views. During this thesis we
prepared the meta-model and weaver to be extended by state view support
in the future.

In Section 3.5.2 we outlined some features of RAM that are currently not
supported and need to be addressed in the future. Among these is the reuse
of the result of original behavior in the advice. A modeler might want to
store the result and use it in the additional behavior or catch and solve an
exception. Possible solutions were presented, but it is necessary to evaluate
their feasibility. Furthermore, the issue of parametrization is of importance
as existing models make use of such features. Currently it is not possible to
express this appropriately. More research has to be conducted on this topic.
In Section 3.5.2 we presented an overview of those features. Once a solution
is found, the meta-model, weaver and user interface have to be adjusted
accordingly to support this. Our defined weaving algorithm currently does
not require the pointcut, as message views are aware of what aspects they
are affected by. Further research should focus on addressing these issues in
order to evaluate whether this is necessary.

By addressing these future works and offering TouchRAM to the public
we believe that it will increase the likelihood that the Reusable Aspect Models
approach and its TouchRAM tool will be adopted and used by users which
will provide more feedback through applying it in other software development
projects.
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