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Abstract—Reuse is central to improving the software develop-
ment process, increasing software quality and decreasing time-
to-market. Hence it is of paramount importance that modelling
languages provide features that enable the specification and
modularization of reusable artefacts, as well as their subsequent
reuse. In this paper we outline several difficulties caused by the
finality of method signatures that make it hard to specify and use
reusable artefacts encapsulating several variants. The difficulties
are illustrated with a running example. To evaluate whether these
difficulties can be observed at the programming level, we report
on an empirical study conducted on the Java Platform API as well
as present workarounds used in various programming languages
to deal with the rigid nature of signatures. Finally, we outline
signature extension as an approach to overcome these problems
at the modelling level.

I. INTRODUCTION

Complex systems are rarely built from scratch. To improve
productivity and achieve higher quality during software de-
velopment, it is common practice to rely on the existence
of reusable artefacts. Reuse of artefacts comes in different
flavours [14]. Planned reuse [7] refers to the situation where:
1) a recurring development issue has been identified, 2) one
or several solutions to this issue have been developed, and
3) the software artefacts (e.g., documentation, models (if any)
and code) realizing the solutions are packaged in a reusable
unit and made available for reuse. At the programming level,
reusable frameworks and libraries are in widespread use.

The philosophy of model-driven engineering (MDE) is
that during development high-level specification models of a
system are refined or combined with other models to include
more solution details, such as the chosen architecture, data
structures, algorithms, and finally even platform and execution
environment-specific properties. Reuse in MDE is achieved
through (domain-specific) modelling languages, which capture
the essential concepts relevant to the development of the
software at a given level of abstraction, and through model
transformations that assist developers in transitioning from one
layer of abstraction to another towards a concrete solution and
implementation. To be effective in this framework, models that
represent the system at a given level of abstraction need to be
generic enough to allow for (ideally many) possible solution-

specific refinements of the system at lower levels. This is even
more true for models that are meant to be reusable.

Interfaces have been effectively applied at the programming
level—but more recently also at the modelling level—to enable
reuse within and across abstraction levels during software
development [12]. This paper reflects on the challenges that
developers face when defining interfaces for higher levels
of abstraction or for units encompassing multiple solution
variants. In particular, we concentrate on the problems caused
by the finality of signature declarations.

The remainder of the paper is structured as follows. Sec-
tion II reviews the software development roles in the context
of reuse, as well as interfaces and signatures. Section III elab-
orates on the difficulties caused by final signatures by means
of examples. Section IV presents an investigation of the Java
Platform API to highlight these difficulties in a state-of-the-art
programming language library as well as a discussion about
workarounds used in various programming languages. Finally,
Section V advocates the need for augmenting programming
and modelling languages with constructs that allow signatures
to be extended, and outlines how such constructs could be
defined for programming and modelling languages alike.

II. ON REUSE, INTERFACES AND SIGNATURES

In the context of reuse, at least two clearly distinct software
development roles arise. The designer of the reusable unit is
an expert of the domain of the development issue that the
unit addresses. She has a deep understanding of the nature
of the issue, is able to identify variations of the problem
and can therefore potentially identify user-relevant variations
or features. Because the designer elaborates and implements
the solution artefacts, she knows the exact implementation
details, their properties and qualities, and the trade-offs that
she decided to make. However, the designer does not know in
what contexts and how exactly the reusable unit may be used
in the future. Therefore, in addition to realizing the solutions,
the designer strives to make the reusable unit as versatile and
generic as possible, so that the solutions can be applied in
a wide variety of reuse contexts. This might again involve
coming up with multiple, functionally equivalent, yet different



variants of realizations in terms of qualities and non-functional
properties, e.g., varying memory footprint or performance.
Finally, the designer needs to modularize and package the
reusable unit to make it available to others, e.g., in form
of a library or framework. There is no doubt that building
a reusable unit is a challenging, non-trivial, time consuming
task for the designer.

A user of a reusable unit on the other hand is an expert of
the application he is developing. He is aware of the specific
requirements of the system he is working on. At some point,
the user might become aware that the software needs to
deal with a specific development issue for which an existing
reusable unit is available. The user knows very little about
the complexity of the recurring development issue, and even
less about the implementation details of different solutions to
the issue offered by the reusable unit. To make reuse possible
and safe, the user needs to be able to determine whether the
reusable unit is applicable to their system. He has to be able
to determine which solution, in case the reusable unit offers
more than one, is most appropriate for the specific application
context. He needs to customize the reusable unit to his specific
reuse context, and then must use the reusable unit correctly.

Experience has shown that reuse of artefacts with explicitly
defined interfaces leads to high levels of reuse maturity [12].
Interfaces specify a contract that bridges the worlds of the
designer of a reusable unit and the (hopefully many) users
of the reusable unit. Furthermore, applying the information
hiding principles [17], interfaces make it possible to hide
solution complexity and properties within a reusable unit, and
hence significantly reduce the complexity that the users of the
reusable unit need to deal with.

A very common way of providing a static interface that
allows the users to trigger functionality provided by a reusable
unit is an operation signature (or service signature). A signa-
ture is made of the operation name, of a set of parameters,
each one comprised of a formal name and type, as well as
the type of value returned by the operation, if any. Finally,
some modelling or programming languages also include in an
operation signature the set of exception types that might be
raised at runtime when the operation is invoked.

Most statically compiled modelling or programming lan-
guages require signatures to always be specified in their
entirety. This forces the designer of a reusable unit to decide
on the exact number1 and type of every parameter of an
operation before she can declare an interface or signature
for it. Once declared, the signature is set in stone, i.e., the
existing parameters are immutable, and no new parameters
can be added. It is of course possible to overload methods,
i.e., declare new methods with the same name and additional
parameters, but then the API contains several methods.

While this might be sometimes appropriate, the finality of
signature declarations poses difficulties to the designer and

1Some statically compiled languages support the declaration of signatures
with an arbitrary number of parameters. For instance, in Java with the varargs
feature [16], or in Go [25] and Python [19] with the variadic function feature.

user of a reusable model in certain situations. These situations
are summarized here and then elaborated further in section III:

1) When a reusable unit encapsulates several solutions,
it is sometimes difficult for the designer to come up
with a common final signature that works for all of the
solutions. The situation is similar when a modeller needs
to define a signature in a model at a level of abstraction
that allows for different solution refinements.

2) With final signatures, it can be difficult for the designer
to add a new feature to a reusable unit in a non-intrusive
way. The situation is similar for modellers who want to
add a new feature to a model of an existing product line.

3) When signatures are used to define callback interfaces
that allow a reusable unit to trigger reuse-context-
specific functionality, it can be difficult for the designer
to define a final callback signature that is ideal for any
reuse context. The situation is similar in reusable models
where the reusable behaviour has to trigger reuse context
specific behaviour.

4) When a programmer or modeller designs a reusable unit
x and reuses reusable unit y with different variations,
it is sometimes difficult to make a final decision, i.e.,
which variant from y to use, since the reuse context of
x is unknown. As a result, it is difficult to define a final
signature for the functionality offered by x, and it is
difficult to specify behaviour in x that calls operations
of y if the variants in y have different signatures.

III. PROBLEMATIC SITUATIONS

A. Difficulties Defining a Common Interface for Alternative
Implementations

When designing a reusable unit with several variations for
a common purpose, a designer generally aims at providing
a common interface to the user that is independent of the
concrete variation being used by the user. This strategy is
highly beneficial, because it allows the user to maintain
a design that stays at a high level of abstraction without
depending on a concrete variation. A common interface makes
it possible for the user of a reusable unit encapsulating multiple
solution variants to replace a chosen variation with another
one exhibiting different qualities without significant effort.
In model-driven design a similar situation occurs when the
designer uses abstraction to delay deciding on solution-specific
details. An interface at a given level of abstraction makes
it possible to explore different solution-specific refinements
during development. Unfortunately, when signatures are final
once they are declared, it is difficult to provide a common
interface in situations where different implementations of an
operation achieving the same functionality require different
parameters to execute.

For example, collections are reusable units that are used
very frequently, and they come in many variants offering
different functionality and exhibiting different non-functional
properties. In programming languages, collections are typi-
cally grouped together so that they can be treated in a similar
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way at a high level of abstraction. Java and C#, for instance,
use inheritance to group different kinds of collections and
algorithms to process them.

But defining a common interface for all kinds of collections
is difficult. For example, the signature for adding an element
to a plain collection is typically add(Element), whereas
adding an element to a map is provided by an operation with
the signature add(Key, Element). This can be problem-
atic if a user wants to treat maps and collections in a uniform
way, e.g., to check whether a collection/map contains a certain
element.

B. Difficulties Adding New Functionality

Consider Resource Management, which is a recurring
functionality required in many applications. At its core
there are Resources which can be allocated to Tasks (sig-
natures Resource.isAvailable() and Task.allo-
cate(Resource)), and a ResourceManager class provides
operations to find and allocate a number of resources to a
given task (findAvailableResources(int)). A corre-
sponding class diagram is shown in Figure 1.

Some applications might need additional functionality,
which can be seen as additional features of the Resource
Management unit. Figure 2 shows a feature model [11] with
two optional variants. Capability provides the ability to differ-
entiate resources according to their capabilities, and Allocation
Cost augments the behaviour of resource allocation to consider
individual resource allocation cost.

Generally, APIs are set in stone once published. The general
recommendation is therefore to put a lot of effort into initial
API design [3]. However, APIs need to evolve to accommodate
changing requirements and integration of alternative solutions.
In the case where the additional or optional functionality
needs to execute together with existing functionality and needs
additional information from the user to process, the situation is
problematic. Since the signature of the operation providing the
existing functionality is final, it is difficult to add additional
parameters to it, and doing so would invalidate every place
where the operation is being used.

For example, the optional feature Capability extends re-
sources with capabilities. Such functionality might be required
by a crisis management system (CMS) that needs to allocate
workers to missions, and differentiate the workers according
to their capabilities, such as driver, fire fighter, first aid
provider, etc. In this case, a resource has an associated
set of capabilities. Additionally, resources are allocated to a
task because they fulfill a needed capability. Therefore, in
order to look for available resources, additional information
is required from the user: the desired capability for which
resources are sought for has to be specified. Hence, some of
the operation signatures of the reusable unit would need an
additional Capability parameter: findAvailableRe-
sources(int, Capability) of ResourceManager,
allocate(Resource, Capability) of Task, and
isAvailable(Capability) of Resource.

When signatures are final, though, it is impossible to provide
a clean common interface to the user of Resource Management
that can be used at a high level of abstraction, i.e., with
and without the optional Capability feature. In programming,
optional functionality of a method is often triggered by param-
eters at the end of the signature. The behaviour of the method
checks the value of the parameter, and if the user passes in a
specific value, e.g., false or null, the optional functionality
is not executed. If the language has support for default values,
the designer can specify false or null as the default value,
which relieves the user from needing to do so. However, the
user still needs to consider these parameters, understand their
intent and make a decision on whether to use them or not.

In our example, the designer of Resource Manage-
ment is forced to provide a common findAvailable-
Resources(int) method that provides the general abil-
ity to find available resources, as well as an ad-
ditional overloaded findAvailableResources(int,
Capability) method to support the optional feature. Alter-
natively, the designer can choose to define only one operation
findAvailableResources(int, Capability), and
specify in the documentation of Resource Management that
users who do not want to use the capability feature must pass
null as an argument when invoking the operation at run time.

Neither of the workarounds are ideal, though. The former
is error-prone, because users who have made the decision to
use capabilities should only call the operations that have the
Capability parameter. If by mistake they invoke one of the
operations that does not handle capabilities, the consistency of
resource management is jeopardized. The second workaround
is at the least confusing, because users who do not want to use
capabilities must upon every operation invocation pass null
as a value.

C. Difficulties Providing a Callback Interface that fits all
Reuse Contexts

Many frameworks take over the flow of control of an
application and use the callback technique to execute ap-
plication code when needed. This requires the designer of
the framework to specify at design time an interface that



defines the operation signature of the callback method that
the framework will call when it wants to hand control to the
application. However, the designer does not know in which
contexts his reusable unit is going to be reused, and therefore
has difficulties defining a final signature for the callback that
will work in all contexts.

For example, the Allocation Cost feature (see Fig-
ure 2) augments Resource Management with the func-
tionality estimateTotalAllocationCost(Set<Re-
sources>) that can determine the total cost of allocation
given a set of resources. Since the allocation cost of an
individual resource typically depends on the state of the
resource and since the designer of Resource Management
does not know anything about the state of the actual re-
sources, the behaviour that calculates the individual alloca-
tion cost of a resource needs to be provided by the user
of Resource Management and invoked though a callback.
To this aim, the designer defines a parameterless callback
signature estimateAllocationCost() that needs to be
implemented for the Resource class by the user.

Unfortunately, this is problematic when Resource Manage-
ment is reused in the context of the CMS where workers are
allocated to missions. Missions typically are performed in a
certain region or location. When allocating a specific worker to
a mission, the allocation cost depends on the distance between
the worker’s current location and where the mission is taking
place. The current location of the worker—the resource—is
part of the state of the worker, and accessible in the call-
back method. Unfortunately, the location of the mission—the
task—is not accessible. Possible steps the designer can take
to anticipate this problem is to include a dummy Object
parameter in the callback. The user then has to create a class
that subclasses Object with attributes to hold the desired
application-specific state. Additionally, the user then has to
tell the reusable unit at runtime which concrete instance of
this new class to pass to the callback. This does work, but is
very cumbersome.

D. Difficulties Delaying Design Decisions

An additional difficult situation arises in the context of
software product line development (SPL) [18] and reuse hier-
archies. Software product line development is an approach that
is beneficial when developing a collection of similar software
systems—a family of products—that share some commonali-
ties and differ in a well-defined set of features exposed by the
SPL. To increase reuse, functionality that has been identified
as common is encapsulated within shared software artefacts
that are reused within multiple products. Unless the shared
functionality is absolutely identical for all products, it is again
difficult for the designer of the shared reusable unit to define
an interface that satisfies the needs of each individual product.
A specific product or feature might require a slightly different
variant of the functionality encapsulated within the reusable
unit, which in turn could require additional information to
process. This resembles the difficult situations explained in
sections III-A and III-B. In a way, the design decision of which
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concrete product to produce in an SPL is delayed until the SPL
is configured with the desired set of features. It is only at that
time that it is absolutely clear what information is needed to
process some shared functionality.

This situation is even more prominent when a designer of
a reusable unit wants to reuse (within his own design) some
other reusable unit that offers different variations. For example,
in [2] the authors describe the design of a reusable unit
Association encapsulating various association designs based on
different collection types with different features: support for
unique elements, multi-threading, enforcement of minimum
and maximum amounts of elements, etc. A feature model of
such a reusable unit is shown in Figure 3. Internally, it uses
Java collection types to implement the different association
features, as suggested by the names of the leaf features.
However, it would be possible to use collection types of
another object-oriented programming language instead.

The designer of Resource Management can use the As-
sociation reusable unit to keep track of one or more re-
sources that are allocated to a task. The designer of Resource
Management could reuse any of the variants provided by
Association to realize this relationship. However, each variant
exhibits different properties, in particular with respect to non-
functional properties, e.g., performance or memory usage.
Since Resource Management is a reusable unit itself, it is
impossible for the designer of Resource Management, who
now also is the user of Association, to determine the most
appropriate alternative to reuse, since this decision depends
on the context in which Resource Management will be reused
in the future. Ideally, the designer would like to delay the
decision [13] of which specific variant of Association to reuse
and complete her design using a common, high-level interface.

IV. VALIDATING THE NEED FOR FLEXIBLE SIGNATURES

A. Exploring the Java Platform API

This section presents an empirical study that we conducted
to demonstrate the potential usefulness of signature extension.
Java ships with an extensive runtime library of reusable classes
providing different kinds of commonly needed functionality.
We examined the Java 10.0.1 runtime, and focussed our atten-
tion on the java.base module, which contains 5746 classes, of
which 3245 are in the java and javax root packages.

The Java programming language has evolved since version
1.0 (released in 1996) and contains evolution information in
the source code. We extracted the following information from



the source code of the java.base module (version 10.0.1) for
each public method of public classes:

• the method’s signature
• whether the method overloads another method
• whether the method is marked as deprecated, which is the

Java way of saying that a method is outdated and should
not be used anymore. If available, we also extracted since
which version the method is deprecated2, and from the
Javadoc’s @deprecated tag the comment explaining
the deprecation, and whether the method was replaced
with other alternative methods

• in which version the method was introduced (provided
using Javadoc’s @since tag)3

• whether the method implements/overrides another (from
a superclass/interface)

To accomplish this task, we used the AST Parser of Eclipse
JDT and parsed each source file contained in the corre-
sponding source code file of the java.base module. We only
considered the main type declaration of the java file and hence
ignored any additionally defined inner classes. In total we
found 1104 public classes and 11720 public methods. The
following tables present the gathered information.

Table I
GATHERED DATA OF THE java.base MODULE

Module java.base
Number of public classes 1104
Number of public methods 11720
Number of overloaded methods 4072
Number of methods overloaded in subclasses 41
Number of deprecated methods 138
Number of overloaded methods that are deprecated 36

As Table I shows, close to 35% of all the public methods
offered by the java.base module are overloaded. This is a
considerable number. 41 methods are overloaded in subclasses,
which is an indication of the presence of alternate features that
need additional or potentially a different set of parameters.
36 overloaded methods are deprecated, which means that
potentially due to evolution they had to be replaced by other
operations with different parameters.

We therefore examined the overloaded methods in more
detail, looking at each group of overloaded methods. A group
consists of all methods of the same name in the same class.
Table II shows the results of our investigation.

There were a total of 1488 groups of overloaded methods.
403 of them, i.e., 27%, contained methods that were intro-
duced over time in later versions of Java. Again, some of
those methods could represent situations in which new features
were introduced that required different parameters. 21 of those
groups had a deprecated method in them, and for 10 of those
new methods were introduced at the same time. These could

2Since the since attribute for @Deprecated was only introduced with
Java 9, the earliest value retrieved is version 9.

3If a method does not have this information, we assumed that it was
introduced in the same version as the class, which is provided with the
@since tag in the Javadoc information of the class.

Table II
GATHERED DATA OF ALL METHOD GROUPS OF THE java.base MODULE

Module java.base
Number of method groups 1488
Minimum group size 2
Maximum group size 20
Average group size 2.74
Number of groups with a deprecated method 21
Number of groups where a method was introduced
in a later version

403

Number of groups where a deprecated method
exists and a method was introduced (potentially
replacing the deprecated method)

10

represent situations in which new features were introduced,
and as a result, methods required a new set of parameters to be
able to continue to provide their functionality in the presence
of the new feature.

We further manually searched the Java base module to find
situations other than collections where signature extension
could be helpful.

a) Adding Optional Functionality: With Java 1.4,
support for different character encodings other than the plat-
form’s default encoding was added as a new feature through
the additional class java.nio.charset.Charset.
As a result, several methods across the API were added
to take a Charset as an argument, or alternatively
a String argument designating the name of the
character set, e.g., UTF-8. For example, in addition
to the method java.lang.String.getBytes(),
java.lang.String.getBytes(Charset) as well as
java.lang.String.getBytes(String) were added.
In total, due to the introduction of the character encoding
feature in Java 1.4, there are now 25 overloaded methods
with an additional Charset argument.

Similarly, Java 1.4 introduced a new abstract class
java.net.SocketAddress with one subclass
java.net.InetSocketAddress which implements
an IP socket address consisting of an IP address
and port. This was added alongside the existing
java.net.InetAddress (which only consists of
the IP address). When dealing with sockets, methods
requiring an InetAddress therefore also need an
argument for the port. As a result, through the addition
of SocketAddress, those methods (such as in the
classes DatagramPacket, DatagramSocket, and
MulticastSocket of the java.net package) had to be
overloaded with the alternative functionality. Interestingly,
in java.net.Socket and java.net.ServerSocket,
instead of overloading the existing constructors with a
SocketAddress argument, each class has a constructor
to create an unbound socket and an additional method
accepting a SocketAddress, which needs to be called
after instantiation.

We located another additional optional functionality in
classes that write to files. Both java.io.FileWriter
and java.io.FileOutputStream allow optionally to



append to an existing file instead of writing it from
scratch. This is specified using an additional boolean
argument in the respective overloaded constructor. What
is interesting to note is that FileWriter does not
have an overloaded constructor allowing the character
set to be specified (see above). Due to this lack, the
Apache Commons IO library4, which supplies input/out-
put utilities, provides a class org.apache.commons-
.io.output.FileWriterWithEncoding to accom-
plish this. I.e., it contains both optional functionalities to
specify a custom character set and appending to a file.

b) Providing a Common Interface for Alternative Im-
plementations: In Java, a design decision was made to use
two disjoint class hierarchies for maps (Map) and collections
(Collection). One of the reasons being that forcing maps
to be collections or vice versa “[...] leads to an unnatural
interface”5. As described in Section III-A, this is problematic
when they should be treated in a uniform way. Furthermore,
simply iterating over a map is not directly possible. Instead, the
user needs to make the explicit choice to iterate over the key,
value or entry set. The entries itself are key-value pairs that
are exposed to the user. This can lead to inefficiencies when
a user is not aware of this particularity, and writes code that
iterates over the keys, only to then retrieve the corresponding
value for each iteration step using the get(key) method.

In contrast, C# only uses one hierarchy, i.e., Collection,
that also contains maps (Dictionary). However, because a
collection is generic and typed to contain elements E, for maps
the type E is a KeyValuePair, where each instance provides
an entry of the map with a key and its value. Because the add
operation is defined in the top-level class Collection, the
user can call it also on a map, but needs to provide an instance
of a KeyValuePair as a parameter. In order to help the
user who does not need the additional layer of abstraction
and hence does not mind to write dictionary-specific code, an
additional, more convenient method (add(K, V)) is defined
in Dictionary that transparently takes care of creating a
KeyValuePair instance for the user.

B. Exploring Workarounds in Programming Languages

Looking at the Java Platform API confirmed the occurrence
of the first two difficulties outlined in Section III. In order to
overcome these at the programming language level, there exist
certain workarounds.

a) Adding Optional Functionality: In the situation where
a reusable unit is already being used and additional functional-
ity is added, the goal is often to keep binary compatibility [8].
Guidelines for defensive interface evolution provide several
ways to achieve minimal impact on the user in addition to the
basic strategy outlined above [5]. Among them are defender
methods (also known as virtual extension methods) introduced
in Java 8 [6], abstract classes with default implementations,

4See https://commons.apache.org/proper/commons-io/.
5http://docs.oracle.com/javase/8/docs/technotes/guides/collections/

designfaq.html#a14

or Eclipse’s way of specifying additional interfaces that ex-
tend the existing interface [9]. Other workarounds that are
suggested for API evolution within Eclipse are marking the
old method as deprecated and forwarding the call to the new
method in its implementation.

b) Providing a Callback Interface that fits all Reuse
Contexts: The third problem is a problem developers com-
monly face. The query “pass extra argument to callback
function” on Stack Overflow results in 259 questions (or
their answers) being matched. Various programming languages
provide workarounds to overcome the difficulty of the user
to require extra information within a callback. Here is a non-
exhaustive list of techniques that we have observed at the code
level to deal with the situation, some depending on specific
implementation language features.

1) The user can define a custom interface that contains a
method with the additional parameters. The user then
implements the original interface, which when invoked
determines the value for the additional parameters, and
forwards the call to the custom interface with the addi-
tional arguments6.

2) When a programming language supports anonymous
inner classes, the user can declare an operation with
parameters that hold the additional information. When
called, the method creates an anonymous instance of
the callback interface and returns it, which can then
be registered with the framework. When the callback
is received, the additional parameters of the operation
are accessible from the anonymous inner class7.

3) In Python, lambdas, partial functions [27], or function
decorators [24] may be used to augment framework-
defined callbacks with additional parameters.

4) In Javascript, it is possible to call a function with more
arguments than defined in its signature. Inside the func-
tion, arguments can be accessed using the arguments
object [26]. This could help the user to access additional
arguments in a callback, but the designer would also
have to pass additional values in the call. Alternatively,
it is possible to bind additional parameters to a function
using the bind function [15], [10].

5) Similarly, in C++, a bind method exists (provided by
a separate library called boost::bind from the C++
collection of libraries called boost) [4], [20]. It allows
to create a new function pointer to be created with the
original function’s arguments bound or rearranged, and
also to add additional parameters, if needed.

V. DISCUSSION AND OUTLOOK

The Collection and Resource Management examples in
Section III, as well as the empirical observations at the
programming language level presented in Section IV provide

6This technique is illustrated in the Android example XYZTouristAttrac-
tions in the AttractionListFragment Java class using the custom
ItemClickListener interface [22], for example.

7This technique is illustrated in the Android example XYZTouristAttractions
in the AttractionsGridPagerAdapter Java class [23], for example.

https://commons.apache.org/proper/commons-io/
http://docs.oracle.com/javase/8/docs/technotes/guides/collections/designfaq.html#a14
http://docs.oracle.com/javase/8/docs/technotes/guides/collections/designfaq.html#a14
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evidence that the finality of signature declarations can cause
difficulties to modellers and developers of reusable artefacts.
The problem is more pronounced in the context of SPL devel-
opment, where the number and type of parameters of methods
might vary depending on the selected features for a product.
To the best of our knowledge none of the existing modelling
or programming language techniques or workarounds can deal
with these difficulties in a satisfying way.

We therefore propose a mechanism for signature extension
as a solution to overcome the aforementioned difficulties. Fig-
ure 4 shows an excerpt of a metamodel that provides mappings
between methods and between parameters. Using these map-
pings, a method signature with its parameters can be defined
in one place, and then re-defined again in another place,
potentially with additional parameters. MethodMappings are
established between the two definitions of the method, and
ParameterMappings are created for the common parameters.
This makes it possible to incrementally build a signature,
e.g., when moving down abstraction levels, or when adding
support for additional features. For example, for the Collection
example outlined in Section III-D, signature extension allows
to define a common interface in Kind for adding an element.
Ordered then extends the signature with an additional index
argument, whereas KeyIndexed extends it with an additional
key argument. In addition, it allows the common interface of
Kind to be used before deciding on any concrete collection.

The signature extension approach should be applicable
to any software development language that uses signatures
to define interfaces. The approach allows to incrementally
define signatures, as well as use partially defined signatures
before all extensions are known. We are currently in the
process of adding support for signature extension to Concern-
Oriented Reuse (CORE) [1], [21], a compositional, model-
driven approach to software development inspired by advanced
separation of concerns, software product lines and aspect-
oriented software development. CORE supports design mod-
elling using class, sequence and state diagrams. We are using
the signature extension mechanism outlined above to make it
possible for the designer or the user of reusable class diagram
models to specify structural extensions to signatures already
defined in other class diagrams. We are planning to use aspect-
oriented modelling techniques to specify how to deal with the

additional parameters behaviourally in the sequence diagrams
and state diagrams, e.g., by specifying additional behaviour for
existing sequence diagrams of signatures that were extended
to deal with the additional formal parameters, or by adding
additional values to method calls of extended signatures.
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