Concern-Oriented Software Design
with TouchRAM

Matthias Schottle, Omar Alam, Abir Ayed, Jorg Kienzle

School of Computer Science, McGill University, Montreal, Canada
mschoettle@cs.mcgill.ca, Omar.Alam@mail.mcgill.ca,
Abir.Ayed@mail .mcgill.ca, Joerg.Kienzle@mcgill.ca

Abstract TouchRAM is a multitouch-enabled tool for agile software
design modelling aimed at developing scalable and reusable software de-
sign models. This paper briefly summarizes the main features of the
Reusable Aspect Models modelling approach, highlights the new fea-
tures of TouchRAM that have been added in the last 6 months, and
then describes how the tool is used to incrementally elaborate a software
design model. A video that demonstrates the use of TouchRAM can be
found here: http://www.youtube. com/watch?v=18LMqwwRPg4

1 Introduction

TouchRAM [1] is a multitouch-enabled tool for agile software design modelling
aimed at developing scalable and reusable software design models. The tool gives
the designer access to a vast library of reusable design models encoding essential
recurring design concerns. It exploits model interfaces and aspect-oriented model
weaving to enable the designer to rapidly apply reusable design concerns within
the design model of the software under development. The user interface features
of the tool are specifically designed for ease of use, reuse and agility.

This paper briefly summarizes the main features of the Reusable Aspect
Models (RAM) [5] approach that our tool exploits to make design model reuse
possible, and highlights the new features that were added to TouchRAM since the
last demonstration at AOSD 2013 [4] in section 2. Section 3 describes the software
design process using TouchRAM and the last section draws some conclusions.

2 Essential Features of RAM

TouchRAM is based on Reusable Aspect Models (RAM) [5], an aspect-oriented
multi-view modelling approach that integrates class diagram, sequence diagram
and state diagrams. As a result, a RAM model can describe the structure and
the behaviour of a software design concern. Currently, however, TouchRAM only
provides full support for structural modelling with class and sequence diagrams,
and only partial support for protocol modelling with state diagrams.

The most important concepts of RAM that make incremental software design
modelling possible are model interfaces, model hierarchies and model libraries.

2.1 Design Model Interfaces

Every RAM model has a well-defined model interface [2], which makes the con-
cern that is modelled easy to use within other models.



The interface has two parts: the customization interface and the usage in-
terface. The customization interface specifies how a generic design model needs
to be adapted to be used within a specific application. To increase reusability
of models, a RAM modeller is encouraged to develop models that are as gen-
eral as possible. As a result, many classes and methods of a RAM model are
only partially defined. The idea of the customization interface is to clearly high-
light those model elements of the design that need to be completed/composed
with application-specific model elements before a generic design can be used
for a specific purpose. These model elements are called mandatory instantiation
parameters.

The usage interface is similar to a “classic interface” found in programming
languages. It is comprised of all the public model elements, i.e., the structural
and behavioural properties that the classes within the design model expose to
the outside. In other words, the usage interface presents an abstraction of the
functionality encapsulated within the model to the user of such a model. It
describes how the rest of the application can trigger the functionality provided
by the model by instantiating classes and invoking operations on them. At the
same time, the usage interface hides the internal details of the design model from
the rest of the application, which does not need to know how the functionality
is decomposed into classes/methods and how objects interact at run-time to
achieve the functionality.

2.2 Design Model Hierarchies

RAM allows a modeller to build complex models of any size by putting together
many interdependent, simple models. This is achieved through model dependen-
cies. To use the functionality provided by a (base) RAM model B within the
design of a model A, the designer must specify instantiation directives that map
the model elements of B that provide the desired functionality to the model el-
ements of A that need the functionality. Using these directives, the TouchRAM
tool can, upon request, compose both models to yield a “woven” model that
combines the model elements from both designs.

RAM supports two kinds of model dependencies, model extensions and model
customizations. When A extends B, the modeller’s intent is to add additional
structural and/or behavioural model elements to B that provide additional, al-
ternative or complementary properties to what already exists in B. The extension
model A augments the interface of the base model B with additional structure
and behaviour.

A customization dependency is useful when a modeller’s intent is to adapt
the structure and behaviour provided by a base model B to be useful in a
specific context. Within a customization model A, a modeller alters or augments
existing base model properties to render them useful for a new purpose or to
complete partially defined elements. When using customization, all mandatory
instantiation parameters of base B need to be mapped to model elements in
A. The interface of the customizing model A hides the details of B from the
outside world; if any, A exposes only model elements of B produced as a result
of customization.



In RAM, a model C can depend on several models B;, which in turn can
depend on models A;;, etc., thus creating a model hierarchy. Using the instantia-
tion directives, TouchRAM can incrementally and recursively combine all models
of the hierarchy to yield a design model that shows the complete design.

2.3 Library of Reusable Design Concern Models

Class libraries offer programmers thousands of classes that provide solutions for
common implementation concerns, e.g., common data structures, such as lists,
trees, and maps. That way, a programmer does not need to code these classes
herself, but simply reuses their behaviour by instantiating them and calling the
appropriate methods. The idea of the reusable design concern model library
(RDCML) that ships with TouchRAM is similar, but is applied to modelling. Its
purpose is to increase modelling productivity by providing models for common
design concerns that a modeller can use within an application model with min-
imal effort when appropriate. Current design models shipped with TouchRAM
include workflow execution middleware, network support, and design patterns.

2.4 Extensions of TouchRAM since Demo at AOSD 2013

TouchRAM has been significantly extended since the last demonstration at
AOSD 2013 [4]. The user interface architecture was completely rewritten to
now supports true multitouch. Gesture processors can now be associated with
every GUI element, and as a result can handle multiple concurrent gestures.
This is especially important in the context of big touch-enabled devices, which
allow multiple users to interact with the models simultaneously. It is now, for
instance, possible for one user to edit properties of a class, while another user
creates associations or moves classes around.

The second major extension relates to the model weaver, which now supports
weaving of sequence diagrams. A message view describes the interactions that
take place between objects to achieve a specific functionality at the level of
abstraction of the concern that is being modelled, i.e., the view only shows the
executed method calls that are defined in the current model. With message view
weaving, the user can now “expand” the behavioural scenarios to include lower
level details, i.e., the subinteractions that take place when methods are called
that are defined in lower-level models.

Finally, TouchRAM now also supports the creation and visualization of state
views. To this aim, the RAM metamodel had to be extended, and a new view
capable of displaying states and transitions was added to the user interface. State
diagram weaving, however, is not supported yet.

3 Software Design with TouchRAM

Software design modelling with TouchRAM integrates well with modern software
design processes, e.g., prototyping or iterative methodologies, as the design and
implementation of the application is conducted in phases. First, a simple version
of the application is developed that only provides core functionality and services.
Detailed and additional functionalities are added in subsequent iterations.



3.1 Design Modularization Strategies

Completeness: The most important criteria for designing with model hier-
archies is coherent modularization. Each model specifies a logical design step
towards the final design model, and therefore needs to contain all the structural
and/or behavioural elements pertaining to that logical step. This is important
for internal consistency of the model: it simplifies reasoning about the design
concern as well as making coherent changes to the modelled structure and/or be-
haviour, if needed. An additional advantage of completeness of individual models
is that, by construction, any composed model is therefore also complete.

Size: Each individual RAM model should be small, as psychological studies
show that the active working memory of a human is limited. Examining or
building a model of a system induces a certain mental effort on the modeller. This
effort is correlated with the model size, and influences the amount of working
memory the modelling activity utilizes [6]. When an individual undertakes a
mental task (e.g., attempting to analyse a model or answer questions about a
model) that exceeds their working memory capacity, errors are likely to occur [§].

Vertical Design Decomposition: One way of modularizing a complex soft-
ware design is to follow a top-down and/or bottom-up strategy, depending on
whether the focus is to first elaborate high-level abstractions and functionality,
or rather to initially flesh out certain important low-level details of parts of the
design. For instance, if detailed functional requirements for the software under
development have been elaborated, the initial design phase might begin with
deciding on a high-level architecture for the system, and how the required func-
tionality is to be decomposed into subfunctionalities and allocated to different
components. On the other hand, if a certain subfunctionality is crucial to the
functioning of the software under development, or if reusing an existing software
artifact such as a middleware is mandatory or highly cost-effective, then low-
level details of a specific required functionality might be designed first in order
to determine if the design is actually feasible.

To enable such top-down or bottom-up design, abstraction and information
hiding are key to tame the inherent complexity of a system [7]. Information
hiding is the activity of consciously deciding what parts of a software module
should be exposed to the outside, i.e., the “rest” of the software under devel-
opment, and what parts should be hidden from external use. In RAM this is
done using customization. Only the structural and behavioural properties that
are relevant to use the model are exposed in the model’s interface. The design
details pertaining to how this functionality is provided are not relevant to the
user. When using customization, the TouchRAM weaver automatically hides the
customized model interfaces of the lower-level models from the user.

Horizontal Design Decomposition: When transitioning from one iter-
ation of the software design to the next, it is typical to consider additional
functionality. As a result, the core parts of the existing design are complemented
with additional functionality, or new components are introduced that take care
of providing the additional functionality and the existing design is adapted to
integrate the new components. This form of incremental design is supported in
TouchRAM using model extensions, which can adapt and extend existing model



interfaces. When composing a model that extends another model, the interface
of the composed model produced by TouchRAM is formed by the union of the
two source model interfaces.

Concern-Oriented Software Design: [3] introduces the concern as a new,
broader unit of model reuse that encompasses all design solutions targeted at
solving a specific design problem. To make reuse straightforward, a concern pro-
vides an interface that clearly describes the different variations of the designs it
encapsulates, as well as their impact on non-functional application properties.

Unfortunately, the current version of TouchRAM does not support the cre-
ation and editing of such a variation interface by the user. However, the models
that are part of the reusable concern library that comes with TouchRAM have
already been designed following a concern-oriented philosophy: models that rep-
resent variations of design solutions relating to the same design concern have
been stored within a common folder. They have been designed using model ex-
tensions to share common structure and behaviour when appropriate. The mod-
eller can therefore simply choose the set of RAM models (from within a concern
folder) that provide the desired variant of a design concern and customize them
to her needs.

4 Conclusion

This demo paper summarises how TouchRAM, a multitouch-enabled tool for
agile software design modelling, can be used to elaborate a software design
model. For more information on the multitouch user interface and the model
transformation technology that TouchRAM is based on the interested reader
is referred to [1]. The current version of TouchRAM and the reusable design
concern model library can be downloaded from http://www.cs.mcgill.ca/
~joerg/SEL/TouchRAM.html. To use the multitouch features, a TUIO supported
multitouch input device must be connected.

References

1. Al Abed, W., Bonnet, V., Schottle, M., Alam, O., Kienzle, J.: TouchRAM: A
multitouch-enabled tool for aspect-oriented software design. In: SLE 2012. pp. 275
— 285. No. 7745 in LNCS, Springer (October 2012)

2. Al Abed, W., Kienzle, J.: Information Hiding and Aspect-Oriented Modeling. In:
14th Aspect-Oriented Modeling Workshop. pp. 1-6 (October 2009)

3. Alam, O., Kienzle, J., Mussbacher, G.: Concern-Oriented Software Design. In: MoD-
ELS 2013. Lecture Notes in Computer Science, Springer (October 2013)

4. Kienzle, J.: Reusing software design models with TouchRAM. In: AOSD ’13 Com-
panion. pp. 23-26. ACM (2013)

5. Kienzle, J., Al Abed, W., Klein, J.: Aspect-Oriented Multi-View Modeling. In:
AOSD 2009. pp. 87 — 98. ACM Press (March 2009)

6. Paas, F., Tuovinen, J., Tabbers, H., Van Gerven, P.: Cognitive load measurement as
a means to advance cognitive load theory. Educ. Psychologist 38(1), 63-71 (2003)

7. Parnas, D.L.: A Technique for Software Module Specification with Examples. Com-
munications of the Association of Computing Machinery 15(5), 330-336 (May 1972)

8. Sweller, J.: Cognitive load during problem solving: Effects on learning. Cognitive
science 12(2), 257-285 (1988)



