Concern-Driven Software Development with
jJUCMNayv and TouchRAM

Nishanth Thimmegowda!, Omar Alam', Matthias Schéttle?,
Wisam Al Abed!, Thomas Di’Meco?, Laura Martellotto?,
Gunter Mussbacher?, Jorg Kienzle!

1School of Computer Science, McGill University, Montreal, Canada
2Polytech Nice-Sophia, Sophia Antipolis, France
3Dep. of Electrical and Computer Engineering, McGill University, Montreal, Canada
{Nishanth.Thimmegowda,Omar.Alam,Matthias.Schoettle,Wisam.Alabed}
@mail.mcgill.ca, {Thomas.DiMeco,Laura.Martellotto}@gmail.com,
{Gunter.Mussbacher, Joerg.Kienzle}@mcgill.ca

Abstract A concern is a unit of reuse that groups together software
artifacts describing properties and behaviour related to any domain of
interest to a software engineer at different levels of abstraction. This
demonstration illustrates how to specify, design, and reuse concerns with
two integrated tools: jUCMNav for feature modelling, goal modelling,
and scenario modelling, and TouchRAM for design modelling with class,
sequence, and state diagrams, and for code generation. For a demo video
see: http://www.youtube.com/watch?v=KWZ7wLsRFFA.

1 Introduction

In contrast to the focus of classic Model-Driven Engineering (MDE) on models,
the main unit of abstraction, construction, and reasoning in Concern-Driven
Software Development (CDD) is the concern [2]. CDD seeks to address the
challenge of how to enable broad-scale, model-based reuse. A concern is a unit
of reuse that groups together software artifacts (models and code, henceforth
called simply models) describing properties and behaviour related to any domain
of interest to a software engineer at different levels of abstraction.

A concern provides a three-part interface. The variation interface describes
required design decisions and their impact on high-level system qualities, both
explicitly expressed using feature models and goal models in the concern specifi-
cation. The goal models used in CDD are called impact models. The customiza-
tion interface allows the chosen variation to be adapted to a specific reuse con-
text, while the usage interface defines how the functionality encapsulated by a
concern may eventually be used.

Building a concern is a non-trivial, time consuming task, typically done by
or in consultation with a domain expert (subsequently called the concern de-
signer). On the other hand, reusing an existing concern is extremely simple, and
essentially involves 3 steps for the concern user:

1. Selecting the feature(s) of the concern with the best impact on relevant goals
and system qualities from the variation interface of the concern,

2. Adapting the general models of features of the concern that were selected to
the specific application context based on the customization interface, and

http://www.youtube.com/watch?v=KWZ7wLsRFFA

3. Using the functionality provided by the selected concern features as defined
in the usage interface within the application.

In general, MDE approaches rely heavily on tool support. Tool support is even
more important in the context of CDD, in particular for the concern user:

e When selecting the set of features of a concern that best meets the
requirements of the application under development, a concern user needs
to be able to perform trade-off analysis between different variations/im-
plementations of the needed functionality. To do that efficiently, a tool
is needed that performs real-time impact analysis of feature selections.

e Once a selection is made, a tool is needed that composes the models
that realize the selected features to yield new models of the concern
corresponding to the desired configuration.

e When adapting the generated concern models to the application context,
the concern user must map customization interface elements from the
concern to application-specific model elements in the application. Tool
support is helpful to ensure that the mapping is specified correctly.

e Once the concern model is customized, a tool can help to ensure that
the functionality provided by the concern is correctly used.

This demo illustrates CDD in practice by demonstrating Concern-Driven Devel-
opment with two integrated tools: jUCMNav and TouchRAM. Section 2 of this
paper briefly describes how the two tools were modified to support concerns.
Section 3 outlines concern development and concern reuse with the two tools.

2 Integration of jJUCMNav and TouchRAM

JjUCMNav is a requirements engineering tool created in 2005 for the elicitation,
analysis, specification, and validation of requirements with the User Require-
ments Notation (URN). jUCMNav combines two complementary views: one for
goals provided by the Goal-oriented Requirement Language (GRL) and one for
scenarios provided by the Use Case Map (UCM) notation. Recently, jUCMNav
was extended to support combined goal and feature modelling and their inte-
grated analysis based on GRL semantics [5]. Over the last two years, jUCMNav
was demoed at RE [3,4], the 2013 SDL Forum, and the 2013 iStar workshop.
TouchRAM is a multitouch-enabled tool for agile software design modelling
aimed at developing scalable and reusable software design models using UML
class, sequence, and state diagrams. It exploits model interfaces and aspect-
oriented model weaving to enable the concern user to rapidly apply reusable
design concerns within the design model of the software under development.
The user interface features of the tool are specifically designed for ease of use,
reuse, and agility. TouchRAM was introduced initially at SLE 2012 [1], and later
demonstrated at Modularity:aosd 2013 and 2014 [7] and MODELS 2013 [6].
For CDD, jUCMNav and TouchRAM are complementary to each other.
jUCMNav covers the requirements modelling side, providing support for feature
and goal modelling necessary for the definition of a concern’s variation interface.
Furthermore, jJUCMNav supports scenario modelling with the Use Case Map
notation. TouchRAM on the other hand provides support for detailed design

modelling and code generation. The first step in integrating the two tools was
to define the concepts of CDD in a metamodel — the CORE (Concern-Oriented
REuse) metamodel. It defines:
e (Concern, which groups together a set of models,
o Concern Interface, i.e., the variation interface, the customization inter-
face, and the usage interface,
o Concern Reuse, i.e., a concept that is used to store the selected features
and the customization whenever a concern is reused, and
e Feature, with associations to connect the models that realize the feature
and the concern reuses that the feature specifies.

Next, the existing metamodels of jJUCMNav and TouchRAM had to be made
compliant with CORE. This involved declaring classes in the metamodel of
jUCMNav and TouchRAM to subclass classes in CORE. In jUCMNav, the new
subclasses of CORE concepts also subclassed existing URN classes. This allowed
the same analyses performed on URN models to also be performed on CORE-
compliant URN models. Since none of the classes and properties that already
existed in the old metamodels had to be removed or modified, the tools are
still backwards compatible, i.e., they can still read models created with previous
versions of the tools. In addition, the two tools are now file compatible, i.e., it
is possible to create a concern and define features for it in jUCMNav and then
work with it in TouchRAM, and vice versa.

The current version of jUCMNav can be downloaded from http://www.
softwareengineering.ca/jucmnav, the current version of TouchRAM from
http://cs.mcgill.ca/~ joerg/SEL/TouchRAM.html

3 Concern-Driven Development in Action

The demo at MODELS shows how to first build requirements and design models
for the Authentication concern with jJUCMNav and TouchRAM, and then how
simple it is to reuse the Authentication concern within a banking application.

3.1 Developing a Concern

First, the concern is created in jJUCMNav, and the features of the concern are
specified. The left picture in Fig. 1 shows that Authentication has a mandatory
Authentication Means feature that may either be Password or Biometrics. Bio-
metrics must at least include Retinal Scan or Voice Recognition. An optional
subfeature of Password is Password Ezpiry. If desired, unsuccessful authentica-
tion may lead to Access Blocking and long idle periods to Auto Logoff.

The right picture in Fig. 1 shows how goal models are used to specify the
relative impact that each feature has on non-functional requirements and qual-
ities (e.g., security). The model shows that Retinal Scan and Voice Recognition
are the strongest Security mechanisms, even stronger than Password with Pass-
word Expiry, Access Blocking, and Auto Logoff. Once the impacts are specified,
jUCMNav allows the concern designer to interact with the feature model and
evaluate the impacts of different configurations (sets of feature selections) of the
concern (visualized with a color scheme and evaluation values from 0 to 100).

http://www.softwareengineering.ca/jucmnav
http://www.softwareengineering.ca/jucmnav
http://cs.mcgill.ca/~joerg/SEL/TouchRAM.html

100

Mmenﬂcahon
100(A)

, Authentiaton \
........ /
100(*) 100 0
y Y ’ AutoLogdW \ Password Biometrics
4 Blocklng y
\ /

Figure 1. Feature and Impact Modelling and Analysis in jUCMNav

System $User

Security Server

authenticate

Access Blocking Y
Passwore

Autg Logoff

checkAuthentication)
[already authenticated]

Retinal Scan
fail

authenticated

[<4 times] cucces
[success] .
L Voice Recognition

<

Se

[>3 times]

. €
[faill authenticate .
Password Expiry

Figure 2. Scenario Modelling and Analysis in jUCMNav

In jJUCMNav, it is also possible to specify scenarios that describe how a user
would interact with the Authentication concern with the Use Case Maps notation
as shown in Fig. 2. The modeller can associate features with path elements in the
scenario, which makes it possible to automatically visualize the scenario traversal
for a given feature configuration (by highlighting the scenario path in red).

Next, the concern designer uses TouchRAM to create detailed design models
and associate them with each feature of the concern. Aspect-oriented techniques
such as class merge and sequence diagram advising are used to modularize the
structural and behavioural properties of each feature. For instance, if Authenti-
cation defines a class called Credential, the design of Password adds a String
attribute for the password in the class, and the design of Password Ezpiry adds
a Date attribute that stores when the password was last changed as well as ad-
ditional behaviour to update this attribute whenever the password is changed.

3.2 Reusing a Concern

When a modeller creates a specific application for which Authentication is of
relevance, the modeller in the role of the concern user opens the Authentica-
tion concern and selects the desired features from the feature model. While
interacting with the feature model, the impacts resulting from the current se-
lection are constantly updated. When a satisfactory selection has been made,
TouchRAM composes all design models of the selected features together to pro-
duce a detailed design model for this specific configuration. The modeller is then

Joaiance |
+ void withdraw (int amount)

+ void deposit(int amount)
+ void transfer(Account to, int amount)

—
—
=+ IprotectedMethod() + boolean equals(Object arg0)|
oo,)
[—;
‘AuthenticationManager Credentiel <o
o Session Date
- - Date getLastChanged() lastChanged
O - (A Sting ~ Session getCurentSession() + create(Strng password) 1 [+ oaw0
+ boolean authenticate (|Authenticatable a, Credential ¢) |~ void setCurrentAuthenticated (|Authenticatable a) ~ String getPassword()
- Credential getCredentias |Authenticatable key) - |Authenticatable getCur -~ vold setPassword(Sting password) * long gefTime()
~ boolean check(Credential other)

Figure 3. Reusing Authentication in TouchRAM

presented with a mapping view as shown in Fig. 3 that allows the modeller to
customize the Authentication concern to her specific needs by establishing map-
pings between the model elements in the concern and the application model. In
our case, the software is a simple Banking application, and the modeller wants
to enforce authenticated access to accounts. Therefore, Authenticatable maps
to the Customer class, ProtectedClass to Account, and protectedMethod to
withdraw, deposit, and transfer.

Once the customization is completed, the designer of the bank application
can instruct TouchRAM to compose the entire application model to yield the
combined structure and behaviour of the system. From that, TouchRAM allows
the developer to generate executable Java code.

In future work, we are planning to develop several, more complex concerns
to empirically validate the integration of the jUCMNav and TouchRAM tools.

References

1. Al Abed, W., Bonnet, V., Schottle, M., Alam, O., Kienzle, J.: TouchRAM: A
multitouch-enabled tool for aspect-oriented software design. In: SLE 2012. pp. 275
— 285. No. 7745 in LNCS, Springer (October 2012)

2. Alam, O., Kienzle, J., Mussbacher, G.: Concern-Oriented Software Design. In: MOD-
ELS 2013. LNCS, vol. 8107, pp. 604-621. Springer (October 2013)

3. Amyot, D., Leblanc, S., Kealey, J., Kienzle, J.: Concern-Driven Development with
jUCMNav. In: RE 2012, Chicago, USA. pp. 319 — 320. IEEE CS (September 2012)

4. Liu, Y., Su, Y., Yin, X., Mussbacher, G.: Combined Goal and Feature Model Reason-
ing with the User Requirements Notation and jUCMNav. In: RE 2014, Karlskrona,
Sweden. IEEE CS (August 2014)

5. Liu, Y., Su, Y., Yin, X., Mussbacher:, G.: Combined Propagation-Based Reasoning
with Goal and Feature Models. In: MoDRE 2014 (August 2014)

6. Schottle, M., Alam, O., Ayed, A., Kienzle, J.: Concern-Oriented Software Design
with TouchRAM. In: Demonstration Paper at MODELS 2013. CEUR Workshop
Proceedings, vol. 1115, pp. 1 — 6 (october 2013), http://ceur-ws.org/Vol-1115/
demo10.pdf

7. Schottle, M., Alam, O., Garcia, F.P., Mussbacher, G., Kienzle, J.: TouchRAM: A
Multitouch-enabled Software Design Tool Supporting Concern-oriented Reuse. In:
Companion of Modularity:2014. pp. 25-28. ACM (2014)

http://ceur-ws.org/Vol-1115/demo10.pdf
http://ceur-ws.org/Vol-1115/demo10.pdf

	Concern-Driven Software Development with jUCMNav and TouchRAM

