Concern-Oriented Interfaces
for Model-Based Reuse of APIs

Matthias Schottle and Jorg Kienzle
School of Computer Science
McGill University
Montreal, QC, H3A 0OE9, Canada
Matthias.Schoettle@mail.mcgill.ca, Joerg.Kienzle@mcgill.ca

Abstract—Reuse is essential in modern software engineering,
but limited in the context of MDE by the poor availability of
reusable models. On the other hand, reusable code artifacts such
as frameworks and libraries are abundant. This paper presents
an approach to raise reusable code artifacts to the modelling
level by modelling their API using concern-oriented techniques,
thus enabling their use in the context of MDE. Our API interface
models contain additional information, such as the encapsulated
features and their impacts, to assist the developer in the reuse
process. Once he has specified his needs, the model interface
exposes only the API elements relevant for this specific reuse
at the model level, together with the required usage protocol.
We show how this approach is applied by hand to model the
interface of a small GUI framework and outline how we envision
this process to be performed semi-automatically.

I. INTRODUCTION

Model-Driven Engineering (MDE) advocates the use of
different modelling formalisms during software development,
so that the right level of abstraction is chosen to reason
about the system under development depending on the needs.
To move towards an executable implementation, high-level,
problem-centric models are gradually refined or transformed to
progressively integrate solution and platform details. MDE can
also simplify the management, understanding and reasoning
about complex systems, because different modelling notations
naturally push developers to express properties of a system
according to different points of interest, which promotes the
principle of separation of concerns.

Although MDE technology has been available for more
than a decade, adoption of MDE in industry is slow [1].
One of the possible reasons, which our paper focuses on, is
that model reuse between different development projects is
difficult. Typically, models for a system under development
are created from scratch, rather than reusing already existing
models. However, methodical reuse of software artifacts is
considered key to software engineering [2]. Especially com-
panies are interested in reusing existing software artifacts in
order to amortize development costs by increasing quality and
productivity [3]. Furthermore, model libraries or repositories
for reusable models are very uncommon. While some model
repositories exist [4], they mainly focus on collecting example
models or do not have a large community that provides them.

This stands in contrast to reusable code artifacts in the
form of class libraries and frameworks, which are abundant,
readily available on the web, and are often well maintained

by the user community, continuously improved, and come
with good quality textual documentation and different forms
of code examples (tutorials, demos etc.). However, docu-
mentation can still be ambiguous or incomplete [5]. Class
libraries of modern programming languages provide hundreds
of classes that encapsulate commonly used algorithms, data
structures, and mechanisms for input and output. Application
frameworks are also composed of classes, but usually focus on
providing reusable structure and behaviour related to a specific
domain (e.g., graphical user interfaces, persistence, ...). Most
often, frameworks impose an application architecture, drive the
execution control flow, and require the programmer to tailor
the framework to their needs and integrate the application’s
behaviour by implementing interfaces or extending classes
provided by the framework.

In this paper, we propose and outline an approach based
on concern-oriented technology that allows a developer to
define a model interface for an API. Doing this has many
benefits. First, although the code artifact itself is not modelled,
it can be (re)used in an application that is developed following
MBDE principles. This allows the developer to reason about the
system under development at multiple levels of abstraction
and from multiple points of view, and still take advantage
of the functionality and quality of the reused code. Second,
while framework documentations typically only include the
API, textual documentation and some code examples that
demonstrate the use of the API, our concern-oriented model
interface has the following additional advantages:

o provides a high-level, formal, organized view of the user
features that a framework provides, together with depen-
dency constraints among them using a feature model,

o provides guidance to the user on how different alterna-
tives that the framework offers impact the non-functional
properties and qualities of the system that is being built,

« only exposes a subset of the framework’s API tailored to
the user’s needs, reducing the API complexity exposed
to the user to a minimum,

e clearly marks the generic elements (classes, operations)
of the framework that the user needs to customize to
application-specific elements,

o expresses the usage protocol of the different classes
exposed in the framework’s API formally, and

o model checking can ensure that the application models

make correct use of the framework’s API, i.e., they
implement all the required interfaces and adhere to the
correct usage protocol.

The remainder of the paper is structured as follows. Section II
briefly introduces concern-orientation and the three reuse in-
terfaces it promotes, which we use to build the model interface
for frameworks. It also overviews Minueto, a small game
development framework, that we use in Section III to illustrate
our idea. Section IV describes how building concern-oriented
model interfaces for frameworks could be automated, and the
last section draws some conclusions.

II. BACKGROUND
A. Concern-Driven Development

In contrast to the focus of classic Model-Driven Engineering
(MDE) on models, the main unit of abstraction, construc-
tion, and reasoning in Concern-Driven Software Development
(CDD) is the concern [6]. CDD seeks to address the challenge
of how to enable broad-scale, model-based reuse. A concern
is a unit of reuse that groups together software artifacts
(models and code, henceforth called simply models) describing
properties and behaviour related to any domain of interest
to a software engineer at different levels of abstraction. A
concern provides a three-part interface. The variation interface
describes required design decisions and their impact on high-
level system qualities, both explicitly expressed using feature
and impact models in the concern specification. The cus-
tomization interface allows the chosen variation to be adapted
to a specific reuse context, while the usage interface defines
how the functionality encapsulated by a concern may be used.

Building a concern is a non-trivial, time-consuming task,
typically done by or in consultation with a domain expert
(subsequently called the concern designer). On the other
hand, reusing an existing concern is extremely simple, and
essentially involves three steps for the concern user: (1)
Selecting the feature(s) of the concern with the best impact on
relevant goals and system qualities from the variation interface
of the concern. (2) Adapting the general models of features
of the concern that were selected to the specific application
context based on the customization interface. (3) Using the
functionality provided by the selected concern features as
defined in the usage interface within the application.

In general, MDE approaches rely heavily on tool support.
Tool support is even more important in the context of CDD,
in particular for the concern user. The tool needs to guide
the user for selecting variations (making valid selections) and
evaluating impacts (allowing the user to do trade-off analysis
between different selections). In addition, the tool needs to
hide the complexity of the composition of models and provide
validation to ensure proper customization and usage.

We use TouchCORE! [7], [8] a multi-touch enabled,
concern-oriented software design modelling tool that supports
feature and impact models, as well as class, sequence and state
diagrams.

Thttp://touchcore.cs.megill.ca

B. Minueto

Minueto [9], the framework we are using in this paper to
illustrate our idea, is a framework written in Java that touts
itself as a game SDK. It provides an abstraction layer on top of
Java 2D to simplify the creation of 2D multi-platform games
by taking care of the difficult technical parts of game program-
ming related to graphics and input handling, thus allowing
the users to focus more on the game logic. The framework
provides different window modes, shapes, hardware graphics
acceleration and transparency, and integrates event handling
with the render loop. Minueto (we use the current available
version 2.0.1) is shipped with several documentation artifacts:

o A How To section on the Minueto website [10] provides a
quick introduction to the framework, and presents details
on how certain tasks can be accomplished;

« Several runnable code examples show how to use specific
functionality provided by Minueto;

o The API documentation (based on Javadoc);

o A list of Frequently Asked Questions (FAQ) that explain
common issues encountered by users.

III. CONCERNIFYING AN API

[6] introduces CDD and the three concern interfaces, and
illustrates concern-oriented software design with a simple
example. The idea put forward in this paper is to create a
concern interface for an existing code artifact so that it can be
(re)used in the context of MDE. We call this concernification,
and propose a process that an MDE practitioner or the API
designer, that wants to build a bridge between the modelling
world and a (or his) framework, can follow to encapsulate this
framework within a concern and define the three interfaces.

As described in the previous section, the variation interface
of a concern declares the distinctive user-visible aspects and
characteristics of the software that a concern modularizes and
encapsulates using a feature model. In our case, each feature
encapsulates some specific use of the API from the user’s
perspective. Successful concernification of an API therefore
requires the identification of all user-perceived features of
a framework and their relationships: mandatory or optional,
XOR or OR, and cross-tree constraints (requires or excludes).

Once the features are determined, the API that is being
concernified needs to be decomposed according to its features.
In CDD, each feature is described by a design model that
realizes the feature, and therefore each such design model
should contain the subset of the API related to the feature.
Hence, it is necessary to identify which API elements (e.g.,
classes and methods) belong to which feature. To do this, the
parent-child relationships between features (and hence also
between realization models) need to be taken into account:
child models can add additional operations to the classes
defined in parent models, and add new classes.

A. Concernifying Minueto

We created a concern of the Minueto framework by hand
with the intention to observe key points that will allow the
automation of this process. Minueto is a small framework

http://touchcore.cs.mcgill.ca

that consists of 60 classes and interfaces in total, of which
32 classes and 8 interfaces are public. In total there are 253
public and protected methods (~6 on average per class).

As described in the previous section, in order to create
a concern, thorough knowledge is required, which requires
consultation with a domain expert. The authors of this paper
therefore first invested time to familiarize themselves with
Minueto. Several sources of information were used. This
includes the creation of a complete class diagram of the frame-
work to gain an understanding of the big picture. Furthermore,
the different forms of documentation outlined in the previous
section were studied. Finally, the source code was used to gain
deep knowledge and experiment with the examples. Minueto
provides 30 small runnable examples that explain how to use
the API. Each example mostly showcases one use case (such
as drawing a specific shape, handling input etc.).

We constructed the feature model using the examples along
with the class diagram. However, the examples do not cover
all classes and operations. To be able to integrate the missing
elements into the feature model, additional information, such
as their API documentation was considered. The feature model
was constantly refined based on discussions between the
authors, starting at an initial version that was very close to
the class hierarchy to the final version that—from our point
of view—reflects the user’s perspective well.

1) Documenting and Organizing Features: Figure 1 shows
the resulting feature model. The main functionality is divided
into three clusters. The feature Surface provides different kinds
of window modes, GraphicalElement the various elements that
can be drawn and Interactive provides event handling. The
remaining features provide optional functionality. The features
with a grey background are used solely for structuring. They
do not have a design model that realizes them, and hence do
not contain any classes or methods of the API.

2) Specifying Impacts: In CDD, impacts are specified with
impact models such as the one shown in Figure 2 for Minueto.
It contains all high-level goals and qualities that experienced
API developers or users identified as relevant to consider. The
goals are depicted with rounded rectangles, and are connected
to each feature of the API that has an impact on the goal
with a weighted link. The weights are specified using relative
values.

The simplified impact model for Minueto, for example,
states that from a performance point of view, the best set of
features to use is to select Fullscreen and Acceleration, but to
not select Transparency. This selection is not too demanding
on system requirements, but it does require the person playing
the game to have admin privileges on the machine (in order
to switch to fullscreen).

3) Tailoring the API to the User’s Needs: When a user
wants to use Minueto, he will first be presented with the
feature model and requested to make a selection. Based on the
user’s selection of desired features, the API pieces contained in
the realization models of all the selected features are composed
to yield an API of Minueto that only contains the classes and
methods that the user needs.

To illustrate the result of the composed interface based
on a user selection, we present two individual models and
the resulting composition. Figure 3 shows the Windowed
feature. It provides the MinuetoFrame class, which allows
the creation of a GUI application in window mode. Since it
is a subclass of an internal abstract class (and implements
the MinuetoWindow interface), it declares a constructor
and only additional functionality. The remaining methods are
defined in the model of the parent Surface.

Furthermore, Figure 4 shows the Keyboard feature. It pro-
vides the required interface to be implemented and its utility
class. Furthermore, it extends MinuetoWindow and adds the
corresponding methods to (un)register a keyboard handler. The
event queue is provided by the parent feature Interactive.

The result of the composed models is illustrated in Figure 5.
It was obtained by merging the models that realize Windowed,
Surface, Visual, Interactive and Keyboard. Classes that exist in
multiple models are merged, i.e., combining their operations
and attributes. For example, the MinuetoWindow class now
contains the operations required to register a keyboard handler.

In our TouchCORE tool, the model weaver keeps track of
the origin of each model element. This makes it still possible
for the user to highlight which part of the generated API
belongs to which feature, if needed.

4) Specifying Usage Protocols: Our model interfaces make
it possible to specify usage protocols. We use protocol models,
which are similar to state diagrams, but support composition
and allow a protocol machine to refuse transitions. For further
information, the interested reader is referred to [11].

Figure 6 illustrates the usage protocol of the interface
MinuetoWindow, which describes the render loop that is
executed repeatedly to update a window’s content. Before any
drawing operations can be called, the window needs to be
visible. Then, the window has to be either cleared or at least
something has to be drawn into it before it can be rendered.
This cycle repeats, until the window is closed.

Specifying a usage protocol avoids potential user mistakes.
Furthermore, if protocols are specified, the MDE tool can use
model checking to ensure that the API is used correctly.

5) Guaranteeing Correct Reuse: To further facilitate cor-
rect reuse, we can exploit the customization interface provided
by CDD. Partial elements can be added to a design model
realizing a feature, forcing the user to provide a mapping
from the partial elements in the customization interface to the
appropriate model elements in his application. For example,
the use of the feature Keyboard requires a user to implement
the Minuet oKeyboardHandler interface. By providing a
partial class | KeyboardHandler and a partial operation for
each method that needs to be implemented, the user is forced
by the MDE tool to do so. This reduces again the possibility
for making mistakes, and therefore allows the user to focus
more on the logic of the application under development.

IV. TOWARDS AUTOMATED CONCERNIFICATION

Ideally, the developer of an API bundles the source or
binary code of the API already with a concern-oriented model

Legend
& mandatory ~ optional

AN or A xor (alternative)

Visual

] phicalElement Keyboard [Mouse] l i vvu;l l H Platform]
| [| | [Transparency | [Text | [Circle | [Rectangle] [Image | [Line | [MouseWheel| [Window |
[rie]

Figure 1. Hand-Made Minueto Feature Model—(features with white background contain parts of the interface, whereas those with a grey one do not)

Minimize

-1

Decrease Increase
System Required Admin
g - Performance
Requirements Privileges

Transparency| |Acceleration| | Fullscreen | |Swing|ntegration

Figure 2. Minueto Impact Model

aspect Mi realizes Wi

extends Surface L

tructural view

<<impl>>

rame

+ void close()
+ boolean isClosed()

+ MinuetoFrame(int arg0, int arg1, boolean arg2)
+ void setVisible(boolean arg0)

<<impl interface>>

ow

Figure 3. The Interface of the Feature Windowed (sub-feature of Surface)

aspect Minueto.Key d realizes Key

ds Interactive L

structural view

<<impl interface>>

MinuetoKreyboard

MinuetoKeyboardHandler

+int KEY A

<<impl>>
MinuetoEventQueue

+int KEY B

+ void handleKeyPress(int arg0)
+ void handleKeyRelease(int arg0)
+ void handleKeyType(char arg0)

+intKEY SHIFT

<<impl interface>>

MinuetoWindow

+ void registerKeyboardHandler(MinuetoKeyboardHandler arg0, MinuetoEventQueue arg1)
+ void unregisterKeyboardHandler(MinuetoKeyboardHandler arg0, MinuetoEventQueue arg1)

Figure 4. The Interface of the Feature Keyboard (sub-feature of Interactive)

Ci model: Mi i Key l
structural view
<<impl interface>> <<impl>> <<impl interface>>
i i face Q i {andler

+ void clear(MinuetoColor arg0)
+ draw(Minuetolmage arg0, int arg1, int arg2)
+ drawLine(MinuetoColor arg0, int arg1,

int arg2, int arg3, int arg4)

+ MinuetoEventQueue()
+ boolean hasNext()
+ void handle()

+ void handleKeyPress(int arg0)
+ void handleKeyRelease(int arg0)
+ void handleKeyType(char arg0)

<<impl interface>>
MinuetoWindow

+ void close()
+ void setVisible(boolean arg0)
+ void render()

+ void registerKeyboardHandler(MinuetoKeyboardHandler arg0, MinuetoEventQueue arg1)
+ void unregisterKeyboardHandler(MinuetoKeyboardHandler arg0, MinuetoEventQueue arg1)

<<impl>>
Minuetolmage

<<impl>>
MinuetoFrame

<<impl>>
MinuetoColor

Mini uetoKreyboavd

+intKEY_A

+ MinuetoFrame(int arg0, int arg1, boolean arg2)

+ MinuetoColor(int arg0, int arg1, int arg2)

+intKEY B

Figure 5.
Keyboard and Interactive

Generated Interface of the Features Windowed, Surface, Visual,

state view MinuetoWindow

o—{()

setVisible
render drawLine
close i\ clear]
| |
OG_Q draw
drawLine draw

Figure 6. Usage Protocol of the MinuetoWindow Interface

interface. When this is not the case, an automated process of
obtaining a concern interface from an existing API is needed.

We conducted experiments and determined an initial auto-
mated process that can be applied to object-oriented APIs that
come with runnable code examples. The intuition behind the
algorithm is that code examples usually exemplify how to use
a specific feature of the API (or a subset of the features of the
API). The detailed processing steps are as follows:

1y

2)

3)

Analyzing OO Tree Structure: All public classes are
extracted from the API, and clustered into tree structures
based on their inheritance relationships. Subclasses and
classes that implement an interface are potential candi-
dates for sub-features, because they add to the superclass
or provide a specialization. Each tree is converted to
a feature model, where each feature has the name of
the corresponding class in the hierarchy. Since user-
perceived features of an API often involve the use of
multiple classes, this step yields many features that are
false positives. We will call them candidate features, or
short CF.

Analyzing CF Use: To understand how CFs are used,
we annotate each CF with the set of code examples
in which the corresponding class was used in. Usage
includes creation of instances, method calls, public field
access, exception handling, and subclassing.

The relationships between the CFs in each feature model
are determined by comparing the sets obtained for each
CF in step 2. A set that is equal to the parent CF set
leads to the parent-child relationship being mandatory.
If a feature becomes mandatory and it has siblings, they
become optional. If none of the child features turned
mandatory, the sets of all siblings are intersected and
their relationship determined as follows:

« If all of them overlap, the relationship to the parent
is OR, since it is possible to use them together;

o If all of them are disjoint, the relationship to the
parent is XOR, because it appears that they should
not be used together;

o In all other cases, additional intermediate features
that do not correspond to a class have to be added
representing disjoint subgroups. For example, if
sibling CFs B and C intersect, but CF D is disjoint,
an additional intermediate CF is added to group B
and C using an OR-relationship. The relationship
between the intermediate CF and D is set to XOR.

4) Then, all feature models are combined into the biggest
one FMypy. The root CF of the to-be-merged feature
model FM e is taken and combined according to the
following rules:

a) If the class corresponding to the root feature of
FM merge 18 used as the type of a method parameter
in any of the classes represented in FMy,, then
the closest common ancestor feature A covering all
those classes is determined, and the entire FMyerge
is marked to be merged with it. This means the
root is marked to be merged with A, and any sub-
features recursively. This might require adding new
intermediate sub-features to adhere to the feature
model relationship constraints (as in step 3).

b) If the class is not used as a parameter type any-
where, it is marked to be added as an optional
sibling feature of the root of FMy,se.

5) Finally, for all marked CFs that were determined during
step 4, those that are marked to be added or merged
with the same CF and where the corresponding classes
are located in the same package, are grouped using an
intermediate parent feature with an OR relationship. The
intermediate feature is added as an optional parent to CF.
This step considers the fact that a developer of an API
must have had a reason to create a package. Therefore,
we group them under a common parent, assuming that
they can be used for related functionality. All other ones
that are not part of the same package are merged with
the previously determined CF.

Applying this process to the Minueto framework using the
30 runnable examples yields promising results. The obtained
feature model is shown in Figure 7. The upper set of feature
models illustrates the result of our algorithm after applying
steps 1-3, and the lower feature model shows the final feature
model obtained using the combination rules described in 4 and
5. The features with a grey background indicate that a merge
or grouping occurred.

A. Observations

A comparison of the hand-made feature model (Figure 1)
and the automatically generated feature model (Figure 7)
reveals encouraging structural similarities. Even some of the
sub-features that were manually introduced in the hand-made
model show up in the generated one (Surface, Interactive and
Utilities). The following paragraphs discuss the limitations of
our prototype algorithm by commenting on the differences.

o The generated feature model might be missing features if
the provided code examples are few or they do not cover
the entire API. They need to be discovered by consulting
the API documentation, and then inserted manually into
the feature model depending on their purpose. For exam-
ple, Minueto provides the ability to handle Swing events
using the provided event queue. However, no example
code covers this case.

o In the case where most code examples are very narrow,
i.e., they focus on showcasing a single feature, there will
be no examples that exemplify which features can be used
in combination. This leads to false XOR relationships.
For instance, MinuetoCircle is never used with any
other graphical shape, and therefore shows up as an
exclusive alternative to all other shapes in the generated
feature model. Another case is MinuetoPanel. This is
probably due to the fact that in both cases there is only
one example that uses these classes.
Currently, in step 2 of our automated process we
consider only the usage of the entire classes. How-
ever, it could be beneficial to consider use at a finer
grain, i.e., reason at the level of operations. For ex-
ample, the method drawLine (...) of the interface
MinuetoDrawingSurface can be invoked to draw
a line. In the hand-made feature model (Figure 1), this
single operation is modularized within a sub-feature Line
of GraphicalElement. The features DisplaySize, Plat-
form, Acceleration and Transparency represent additional
examples where classes were split across features that
reflect the user’s perspective more appropriately.

o Even code examples of high quality APIs may contain
errors. This reduces the accuracy of an automated ex-
traction. For instance, as shown in Figure 7, the usage set
of MinuetoEventQueue is a superset of the group of
handlers. This is due to the fact that example 1 and 11 in-
stantiate an event queue, but never use it to register a han-
dler, and hence never use it at all at runtime. This mistake,
which could have been prevented with a usage protocol
interface (see subsection III-A4), prevented our algorithm
to merge the EventQueue (MinuetoEventQueue) fea-
ture with the Handler subtree.

All of the above shows that the auto-generated feature model
should be presented to the user to provide the opportunity to
move, merge features and change relationships, if necessary.
This includes renaming to reflect their meaning appropriately.

V. CONCLUSION AND OUTLOOK

This paper explained how to encapsulate existing code
APIs behind a model interface, which not only makes them
(re)usable in the context of MDE, but also results in several
additional benefits. By providing a concern-oriented interface,
it is possible to concisely communicate the features that an
API provides to the user with a feature model. The impact
model provides insight on how each feature affects high-level
goals and qualities. This helps the user to make her selection,
and once she decides, the API presented to the user at the

Step 3:

MinuetoDrawingSurface
(1-30)

Minuetolmage
(3,5,6,13-19,23,34)

MinuetoWindow
(1-30)
=

(1-28,30)

MinuetoPanel
(29)

(1,3,7-12,14-21,23-30)

Legend
& mandatory optional

MinuetoOutO i i cusHand| A or A\ xor (alternative)
(22) (29) (n) unique number of runnable
J) example(s) in which the class/
feature appears
i {andler i {andler
(22) (20,21,26,30)

MinuetoCircle

’ (1-28,30) H (27)

’ MinuetoText

(1,10-12,20,21,23-30)‘ ’(3,7,9,10,17,21,23,26)‘ ’(3,8,14-16,18,19,24)‘

MinuetoKeyboardHandler

(4,13) (10,12,20-24,26,27,29)
olor i Qf MinuetoFil i i ont i board MinuetoOptions | | MinuetoStopwatch | | MinuetoTool | | MinuetoMouseHandler
(1-7,9-14,17,20-30) (1,10-12,20-24,26-30) | |(3,8,13-16,18,19,24,28) | [(1,10-12,20,21,23-30) | | (10,12,20-23,26,27,29) (24,25,28,29) (3,29) (20-22,26,28,29)
Step 5:

@)
(3,24,25,28,29)

’ MinuetoDrawingSurface, MinuetoColor

(1-30)

MinuetoTool
(3,29)

MinuetoStopwatch
(24,25,28,29)

MinuetoOptions
)

(1-30)

MinuetoPanel
(29)

Minuetolmage
(3,5,6,13-19,23,34)

(1,3,7-12,14-21,23-30)

MinuetoText,
MinuetoFont
(1,10-12,20,21,23-30)

MinuetoCircle

(4,13) ’(3.7,9.1 0,17,21,23,26) ‘ ’ (3,8,14-16,18,19,24) ‘

Mi dHandler,

(10,12,20-24,26,27,29)

’ (1-28,30) H (@7)

Figure 7. Automatically determined Minueto Feature Model after Step 3 (top) and Step 5 (bottom; grey features show where a merge or grouping took place).

modelling level is tailored to only show the structure and
functionality relevant for the user. The customization interface
is used to ensure correct adaptation of the API to the reuse
context, and model-checking usage protocols can be exploited
to enforce correct use of the APIL

While concernification involves considerable effort, we be-
lieve that it is acceptable if the API is reused significantly.
Ideally, it is performed by one or several designers of the
reusable artifact, which reduces the effort as they already have
deep knowledge of the artifact. Subsequently, evolution of an
existing concern interface, for example to add a new feature, is
a lot easier. APIs are typically long-lived, and hence impacts
can also be added slowly over time. This could be done even
in a collaborative, open source user community environment.

If this approach is embraced by the software engineering
community, concern interfaces would become a new, formal
form of API documentation provided in addition to the tra-
ditional, informal form, which can easily be ambiguous and
incomplete [S]. This would allow MDE tools and program-
ming IDEs to considerably streamline the reuse process, e.g.,
by reasoning about feature selections and calculating impacts,
by optimizing selections, by providing traceability for features
and their API elements, by allowing concern designers to de-
fine default/pre-made configurations (selections) for the user,
by verifying correct customization and adherence to usage
protocols, and by restricting code completion suggestions to
those conforming to the usage protocol.

We have illustrated our idea by presenting a concern-
oriented interface of a small GUI framework called Minueto,
and outlined a prototype algorithm for extracting the features
of an API automatically. While automated concernification
is not a must, it would simplify adoption of our approach.
We are therefore planning to extend our prototype algorithm
by integrating related work on extracting features from docu-
mentation, e.g., using natural language processing techniques

as described in [12]. How well such an algorithm performs
on frameworks of bigger size, and how useful the concern-
oriented interface actually is for MDE practitioners remains to
be investigated. We are also planning to extend the customiza-
tion interface to support customization through annotations,
naming conventions and external files (XML). Furthermore,
we plan to investigate how to generate tutorials based on a
user’s feature selection to more concisely communicate to the
user how the selected features need to be used.

REFERENCES

[1] J. Whittle, “The Truth about Model-Driven Development in Industry -
and Why Researchers Should Care.” http://www.slideshare.net/jonathw/
whittle-modeling-wizards-2012/, 2012.

[2] C. W. Krueger, “Software Reuse,” ACM Comput. Surv., vol. 24, pp. 131—
183, June 1992.

[3] P. Mohagheghi and R. Conradi, “Quality, productivity and economic
benefits of software reuse: a review of industrial studies,” Empirical
Software Engineering, vol. 12, no. 5, pp. 471-516, 2007.

[4] J. Cabot, “One (virtual) model repository to rule them all.” http:
//modeling-languages.com/one- virtual-model-repository-rule/, 2014.

[5] G. Uddin and M. P. Robillard, “How API Documentation Fails,”
Software, IEEE, vol. 32, pp. 68-75, July 2015.

[6] O. Alam, J. Kienzle, and G. Mussbacher, “Concern-Oriented Software
Design,” in MODELS 2013, pp. 604-621, Springer, 2013.

[71 N. Thimmegowda, O. Alam, M. Schoéttle, W. A. Abed, T. Di’Meco,
L. Martellotto, G. Mussbacher, and J. Kienzle, “Concern-Driven Soft-
ware Development with jJUCMNav and TouchRAM,” in Demonstration
at MODELS, 2014.

[8] M. Schottle, N. Thimmegowda, O. Alam, J. Kienzle, and G. Muss-
bacher, “Feature Modelling and Traceability for Concern-Driven Soft-
ware Development with TouchCORE,” in Companion Proceedings of
MODULARITY 2015, pp. 11-14, ACM, 2015.

[9]1 A. Denault and J. Kienzle, “Minueto, a Game Development Framework

for Teaching Object-Oriented Software Design Techniques,” in Future-

Play 2006, 2006.

“Official Minueto Website.” http://minueto.cs.mcgill.ca/.

W. A. Abed, M. Schéttle, A. Ayed, and J. Kienzle, “Concern-Oriented

Behaviour Modelling with Sequence Diagrams and Protocol Models,”

in BM-FA. Post-proc, vol. 6368 of LNCS, pp. 250-278, Springer, 2015.

C. Treude, M. Robillard, and B. Dagenais, “Extracting development

tasks to navigate software documentation,” Software Engineering, IEEE

Transactions on, vol. 41, pp. 565-581, June 2015.

[10]
(11]

[12]

http://www.slideshare.net/jonathw/whittle-modeling-wizards-2012/
http://www.slideshare.net/jonathw/whittle-modeling-wizards-2012/
http://modeling-languages.com/one-virtual-model-repository-rule/
http://modeling-languages.com/one-virtual-model-repository-rule/
http://minueto.cs.mcgill.ca/

	Introduction
	Background
	Concern-Driven Development
	Minueto

	Concernifying an API
	Concernifying Minueto
	Documenting and Organizing Features
	Specifying Impacts
	Tailoring the API to the User's Needs
	Specifying Usage Protocols
	Guaranteeing Correct Reuse

	Towards Automated Concernification
	Observations

	Conclusion and Outlook
	References

