
TouchRAM: A Multitouch-Enabled Software
Design Tool Supporting Concern-Oriented Reuse

Matthias Schöttle Omar Alam
Franz-Philippe Garcia Jörg Kienzle
School of Computer Science, McGill University,

Montreal, QC H3A 0E9, Canada
{Matthias.Schoettle | Omar.Alam |

Franz-Philippe.Garcia}@mail.mcgill.ca,
Joerg.Kienzle@mcgill.ca

Gunter Mussbacher
Department of Electrical and Computer Engineering,
McGill University, Montreal, QC H3A 0E9, Canada

Gunter.Mussbacher@mcgill.ca

Abstract
TouchRAM is a multitouch-enabled tool for agile software design
modelling aimed at developing scalable and reusable software de-
sign models. This paper primarily focusses on the new features that
were added to TouchRAM to provide initial support for concern-
orientation, and then summarizes the new extensions to behavioural
modelling and improved integration with Java. A video that demon-
strates the use of TouchRAM can be found here:
http://www.youtube.com/watch?v=l8LMqwwRPg4

Categories and Subject Descriptors D.2.2 [Software Engineer-
ing]: Design Tools; D.2.10 [Software Engineering]: Design

Keywords concern-oriented software development, model com-
position, model interfaces, model hierarchies, model reuse, class
diagrams, sequence diagrams, state diagrams

1. Introduction
TouchRAM is a multitouch-enabled tool for agile software design
modelling aimed at developing scalable and reusable software de-
sign models. The tool gives the designer access to a vast library
of reusable design models encoding essential recurring design con-
cerns. It exploits model interfaces and aspect-oriented model weav-
ing to enable the designer to rapidly apply reusable design concerns
within the design model of the software under development. The
user interface features of the tool are specifically designed for ease
of use, reuse, and agility.

TouchRAM was introduced initially at SLE 2012 [1], and
demonstrated subsequently at Modularity:aosd 2013 [9] and MOD-
ELS 2013 [11]. Since then, the main novelty is that TouchRAM
has been extended to support concern-oriented software design as
described in [3]. This paper briefly summarizes the main ideas be-
hind concern-orientation in section 2, and then describes the main
steps for providing basic support for concern-orientation within
TouchRAM based on the Reusable Aspect Models (RAM) [10]

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
MODULARITY ’14, April 22 - 26 2014, Lugano, Switzerland.
Copyright is held by the owner/author(s).
ACM 978-1-4503-2773-2/14/04.
http://dx.doi.org/10.1145/2584469.2584475

approach in section 3. Section 4 highlights other new features that
were added to TouchRAM in the last 6 months: message view edit-
ing and state view weaving as well as better integration with Java.
Finally, the last section draws some conclusions and presents di-
rections of future work.

2. Concern-Orientation
Concern-Driven Development (CDD) refers to software develop-
ment approaches that combine the ideas of model-driven engineer-
ing (MDE), aspect-orientation, and software product lines with a
strong emphasis on reuse. In contrast to classic MDE’s concentra-
tion on models, the main element of focus in CDD is the concern. A
concern is any domain of interest to a software developer1. A con-
cern has a root phase, where the concern manifests itself for the first
time, and encapsulates a set of models. These models describe the
concern’s properties with most appropriate modelling formalisms
for all those phases of software development and those levels of ab-
straction required to sufficiently understand the concern. Some con-
cerns appear in early phases of software development, e.g., broadly
scoped system properties that can have functional, non-functional,
or even intentional characteristics. In later phases, solution-specific
concerns appear, e.g., specific communication protocols, concrete
authentication algorithms, and design patterns. Each concern de-
fines model transformations that link the models established for
the concern across different levels of abstraction. Finally, a concern
also encapsulates all relevant variations/choices that are available to
software engineers at a given phase, together with guidance on how
to choose among those variations by specifying the impact of each
choice on softgoals and non-functional requirements.

A concern provides three interfaces [3]:
• The Variation Interface describes the available variations of the

concern and the impact of different variants on high-level goals,
qualities, and non-functional requirements. The variations are
typically represented with a feature model [8] that specifies the
individual features that a concern offers, as well as their depen-
dencies (optional, alternative, requires, excludes). The impact
of choosing a feature can be specified with goal models (e.g.,
i* [12], KAOS [5], GRL which is part of the User Requirements
Notation (URN) standard [7], and the NFR framework [4]).

• The Customization Interface describes how a chosen variant
can be adapted to the needs of a specific application. Each vari-
ant of a concern is described as generally as possible to increase

1 This is different from aspect-oriented software development, where the
word aspect is typically used to designate a crosscutting concern.

reusability. Therefore, some elements in the concern are only
partially specified and need to be related or complemented with
concrete modelling elements of the application that intends to
reuse the concern. The customization interface is hence used
when a specific variant of a reusable concern is composed with
the application.

• The Usage Interface describes how the application can finally
access the structure and behaviour provided by the concern. For
example, the usage interface of the design model of a concern
is typically comprised of all public classes and methods made
available by the concern.

Consequently, to reuse a concern, a software engineer must 1) se-
lect the feature(s) with the best impact on relevant non-functional
properties from the variation interface based on provided impact
analysis, then 2) adapt the generated detailed models to the ap-
plication context by mapping customization interface elements to
application-specific model elements, to finally 3) use the behaviour
provided by the selected concern features through the usage inter-
face.

2.1 Example Concern: Observer
The Observer Design Pattern [6] is a good example of a design
concern. There exist many different designs of the observer pat-
tern in the literature. For instance, the notification message sent to
the observers when the state of the subject changes can include the
modified state (Push), or no data at all, and hence it is the responsi-
bility of the observer to query the subject to get the changes (Pull).
Push reduces the number of messages exchanged, whereas Pull
can reduce the amount of data that is transferred. Also, in a single
threaded design, in the case where there are a significant number of
observers or when update operations require lengthy computations,
state updates on subjects are slow. In that case, a multi-threaded
implementation that executes notifications concurrently is a good
alternative design that increases the speed at which a change is ex-
ecuted. Finally, there is an extended design of the observer pattern
called model-view-controller (MVC) that defines additional Con-
troller objects that react to events and then request state changes on
the subject (here called Model), which in turn notifies the observer
of the change (here called View). MVC has again two possible de-
sign strategies – Active and Passive – which differ in the way the
control flow passes through the related controller, model, and view
objects. Fig. 1 shows the variation interface of the Observer con-
cern.

3. Concern Support in TouchRAM
TouchRAM is based on Reusable Aspect Models (RAM) [10], an
aspect-oriented multi-view modelling approach for software de-
sign that integrates class diagram, sequence diagram, and state di-
agrams. A RAM model has a customization interface and a usage
interface [2], but no support for expressing variability. As a result,
a RAM model can describe the structure and the behaviour of one
specific design solution, but not of an entire design concern that of-
fers different features or design variants to the modeller. In other
words, RAM was usable as is to describe the design of one feature,
but the concept of concern that groups related features together was
missing.

In order to add support for concerns into TouchRAM we there-
fore had to: a) extend the RAM metamodel to support concerns,
features, and concern reuse; b) allow the modeller to create con-
cerns and define features, as well as specify what RAM models de-
scribe each features’ detailed design; c) update the existing RAM
model library to concerns, and d) allow the modeller to reuse con-
cerns, i.e., d1) to select the desired features of a concern, d2) to
generate the detailed design of the chosen selection by composing

all RAM models associated with the selected features together, d3)
to use the customization interface to adapt the generic model ele-
ments to the specific context in which the concern is reused, and
d4) to allow the application design to trigger behaviour provided
by the concern. These extensions are described in more detail in
the following subsections.

3.1 a) Concern-ifying the Metamodel
In the new version of TouchRAM, concerns have replaced aspects
as the main unit of reuse, and the TouchRAM metamodel had
to be updated in consequence. A specific design solution is still
modelled with a RAM model, but all solutions related to a design
concern are now grouped within a concern. A concern specifies a
variation interface, which consists of a set of features. Each feature
is realized by one or several RAM models.

Current Limitations: So far, the metamodel does not support
the specification of impacts in the variation interface of a concern.
Also, it is currently not possible to model feature dependencies,
e.g., requires and excludes.

3.2 b) Creating Concerns in TouchRAM
Building a design concern is a non-trivial, time consuming task. It
requires a deep understanding of the nature of the design concern
to be able to identify the different features, to model the common
properties and differences of the concrete solutions, and to express
the impact of the different variants on high-level goals. This can
only be done by a domain expert, i.e., someone experienced who
fully understands the nature of the concern and the tradeoffs in-
volved in the different available options.

TouchRAM now allows such a domain expert to create a new
concern, name it, and then create a list of features that the concern
offers. Each feature can be associated with one or several RAM
models that describe its detailed design.

Current Limitations: Due to the limitations of the current
metamodel, it is not possible in TouchRAM to specify the impacts
of the features of a concern. Also, currently the features of a
concern are shown graphically as a simple list, as opposed to a
nice feature model representation with mandatory, optional, and
alternative constraints among features.

3.3 Reusable Design Concern Library
Class libraries offer programmers thousands of classes that provide
solutions for common implementation concerns, e.g., common data
structures, such as lists, trees, and maps. That way, a programmer
does not need to code these classes herself, but simply reuses
their behaviour by instantiating them and calling the appropriate
methods. The idea of the reusable design concern model library
(RDCML) that ships with TouchRAM is similar, but is applied to
modelling. Its purpose is to increase modelling productivity by
providing models for common design concerns that a modeller
can use within an application model with minimal effort when
appropriate.

The RDCML is not meant to replace standard class libraries.
On the contrary, in order to access functionality provided by stan-
dard programming language libraries, TouchRAM currently pro-
vides support for importing Java classes into design models using
reflection as described in section 4.2.

The previous version of TouchRAM shipped with individual
RAM models encapsulating the design of a workflow execution
engine, network communication, and several design patterns. We
restructured the RDCML and reorganized it by concerns: a work-
flow concern with features such as parallel and conditional execu-
tion, synchronization and timed execution, the observer concern
described above, and an association concern that provides differ-

optional

Observer

Push Active PassivePull

ControllerNotification
Method

Concurrent
Update

mandatory

alternative (XOR)

Figure 1. Features of the Observer Concern

ent ways of establishing one to many associations between design
classes.

3.4 Reusing Design Concerns
The process of reusing a design concern is straightforward:

1. Use the variation interface of the concern to select the most
appropriate feature, i.e., the feature that provides the desired
functionality and maximizes positive impact on relevant non-
functional application properties. This generates the detailed
design for the selected feature(s) of the concern.

2. Use the customization interface of the generated design to adapt
the generic design elements to the application-specific context.
This generates the application-specific usage interface for the
selected feature(s) of the concern.

3. Use the selected concern feature(s) within the application de-
sign according to the usage interface.

For instance, when reusing the Observer concern, the modeller
looks at the available features exposed in the variation interface
(see Fig. 1) and their impact on functionality, non-functional and
high-level goals. She then determines that she wants to use pull no-
tification (feature pull) with a passive controller (features controller
and passive).

Currently, in TouchRAM, when a modeller wants to reuse a
concern she is prompted to open the corresponding concern file,
and is then presented with the list of features that the concern
offers. Once the modeller decides on a variation, the TouchRAM
weaver assembles all RAM models that realize the selected fea-
tures and combines them according to the instantiation direc-
tives specified within the models. In our example, four RAM de-
sign models are combined, i.e., a) the one containing the com-
mon design properties among all observer variants, such as the
|Subject and |Observer classes, b) the one with the |getData
and |update operation needed for the pull feature, c) the one
adding the |Controller class with its operations and associa-
tions and also renaming |Subject to |Model and |Observer to
|View, as well as d) the one with the passive controller operations.
The woven design class model is shown in Fig. 2. The customiza-
tion interface is constituted of all classes and operations that have
a “|” prefix. The usage interface is constituted of all the public
operations (designated with a “+”).

The last thing that is left to do is to customize the generated
design to the application. For this, TouchRAM provides a special
mapping view that simultaneously visualizes the application model

and the generated concern variation. With gestures, the modeller
can then, for example, specify the customization directives:

|Model! Stock; |modify! setNewPrice,
|getChanges! getPrice, |create! createStock,
|View! StockWindow, |updateView! refreshWindow,
|Controller! StockWindowController,
|handleEvent ! processClick;

would allow a StockWindow instance to observe Stock instances
and a StockWindowController instance to change the state of
Stock instances.

4. Other Extensions to TouchRAM
TouchRAM has received several other significant extensions to ex-
isting parts, which are described briefly in the following subsec-
tions.

4.1 Extended Support for Behavioural Modelling
Previously message views (sequence diagrams) could only be visu-
alized and woven in TouchRAM. The major extension is that mes-
sage views can now also be created and edited. TouchRAM assists
the user in the creation process. For example, when specifying a
message call, only valid choices of operations (i.e., those defined in
the structural view) that can be called are presented. Furthermore,
the layout is done almost completely automatic. The user can only
move lifelines and the messages are repositioned accordingly.

The second extension is weaving of state views (state diagrams).
For every class there exists one state view, which in turn defines one
or several state machines. When RAM models are woven together,
the state views of the classes that are merged are composed using
the Communicating Sequential Processes (CSP) parallel composi-
tion operator. A user can selectively decide to compose individual
state machines, or weave them all together.

4.2 Extended Integration with Java
Enumeration types can now be defined in TouchRAM. For conve-
nience, instead of having to add each literal separately, the user may
provide the literals in one line by separating them with commas.

When designing software at a low-level, implementation details
are important, and as such, the user might want to reuse existing
classes provided by a programming language or a particular frame-
work. We call these classes implementation classes. Currently, we
support the Java language. The user informs TouchRAM to create an

Figure 2. Generated Detailed Design for Observer<Pull,Controller,Passive> Selection

implementation class using a designated gesture. At the beginning,
only classes from the Java library are available. In case the user
wishes to import a class from a framework, the user may provide
the JAR file. The user is presented with a choice once at least three
characters of the desired class name are entered into the search field
to avoid displaying too many options.

After selecting a class, it is visualized in the structural view.
However, it is initially empty, i.e., it does not contain any oper-
ations. This is done because, in general, implementation classes
have a large number of methods. We therefore decided to only show
methods that the user actually wants to use. Therefore, when a par-
ticular method is needed (i.e., because the user wants to invoke it in
a message view), the user can add it to the implementation class by
selecting it from the list of methods that TouchRAM obtains using
the Java reflection API. In case a method is selected with a return
or parameter type that refers to other implementation classes that
so far have not yet been imported, TouchRAM automatically adds
them to the model.

5. Conclusion
This demo paper summarizes how TouchRAM, a multitouch-
enabled tool for agile software design modelling, was extended
in the last 6 months with initial support for concern-orientation,
message view editing, state diagram weaving, and enhanced sup-
port for Java implementation classes. The current version of
TouchRAM and the reusable design concern model library can be
downloaded from http://www.cs.mcgill.ca/~joerg/SEL/
TouchRAM.html. It runs on Windows, MacOS and Linux-based
systems. To use the multitouch features of TouchRAM, a TUIO
supported multitouch input device must be connected.

In future work, we are planning to augment the user interface
capabilities of the tool so that it is possible to show the variation
interface of a concern graphically with feature diagrams. Gestures
should allow the modeller to assess the impact of a feature on
high level goals directly within the TouchRAM tool. Furthermore,
the creator of a concern should be able to specify features and
impacts directly within TouchRAM and not as currently required in
an external tool. Finally, with support for implementation classes
now in place, we are planning to complete the code generation
capabilities of TouchRAM.

6. Acknowledgements
This work was partially funded by the Natural Sciences and Engi-
neering Research Council of Canada (NSERC) as part of the Digi-
tal Surface Software Application Network (SurfNet).

References
[1] AL ABED, W., BONNET, V., SCHÖTTLE, M., ALAM, O., AND

KIENZLE, J. TouchRAM: A multitouch- enabled tool for aspect-
oriented software design. In SLE 2012 (2012), LNCS 7745, Springer,
pp. 275 – 285.

[2] AL ABED, W., AND KIENZLE, J. Information Hiding and Aspect-
Oriented Modeling. In 14th Aspect-Oriented Modeling Workshop
(October 2009), pp. 1–6.

[3] ALAM, O., KIENZLE, J., AND MUSSBACHER, G. Concern-oriented
software design. In MODELS, LNCS 8107. Springer, 2013, pp. 604–
621.

[4] CHUNG, L., NIXON, B. A., YU, E., AND MYLOPOULOS, J. Non-
Functional Requirements in Software Engineering. Springer, 2000.

[5] DARDENNE, A., VAN LAMSWEERDE, A., AND FICKAS, S. Goal-
directed requirements acquisition. Science of Computer Programming
20 (1993), 3–50.

[6] GAMMA, E., HELM, R., JOHNSON, R., AND VLISSIDES, J. Design
Patterns. Addison Wesley, Reading, MA, USA, 1995.

[7] INTERNATIONAL TELECOMMUNICATION UNION (ITU-T). Recom-
mendation Z.151 (10/12): User Requirements Notation (URN) - Lan-
guage Definition, approved October 2012.

[8] KANG, K., COHEN, S., HESS, J., NOVAK, W., AND PETERSON,
S. Feature-oriented domain analysis (FODA) feasibility study. Tech.
Rep. CMU/SEI-90-TR-21, SEI/CMU, 1990.

[9] KIENZLE, J. Reusing software design models with TouchRAM. In
AOSD ’13 Companion (2013), ACM, pp. 23–26.

[10] KIENZLE, J., AL ABED, W., AND KLEIN, J. Aspect-Oriented Multi-
View Modeling. In AOSD 2009 (March 2009), ACM Press, pp. 87 –
98.

[11] SCHÖTTLE, M., ALAM, O., AYED, A., AND KIENZLE, J. Concern-
oriented software design with touchram. In MODELS-JP (2013),
no. 1115, CEUR, pp. 51 – 55.

[12] YU, E. Modelling strategic relationships for process reengineering.
PhD thesis, Department of Computer Science, University of Toronto,
1995.

