
Feature Modelling and Traceability for
Concern-Driven Software Development with TouchCORE

Matthias Schöttle Nishanth Thimmegowda
Omar Alam Jörg Kienzle

School of Computer Science, McGill University,
Montreal, QC H3A 0E9, Canada

{Matthias.Schoettle, Nishanth.Thimmegowda,
Omar.Alam}@mail.mcgill.ca,

Joerg.Kienzle@mcgill.ca

Gunter Mussbacher
Department of Electrical and Computer Engineering,
McGill University, Montreal, QC H3A 0E9, Canada

Gunter.Mussbacher@mcgill.ca

Abstract
This demonstration paper presents TouchCORE, a multi-touch en-
abled software design modelling tool aimed at developing scal-
able and reusable software design models following the concern-
driven software development paradigm. After a quick review of
concern-orientation, this paper primarily focusses on the new fea-
tures that were added to TouchCORE since the last demonstration
at Modularity 2014 (were the tool was still called TouchRAM).
TouchCORE now provides full support for concern-orientation.
This includes support for feature model editing and different modes
for feature model and impact model visualization and assessment
to best assist the concern designers as well as the concern users. To
help the modeller understand the interactions between concerns,
TouchCORE now also collects tracing information when concerns
are reused and stores that information with the woven models. This
makes it possible to visualize from which concern(s) a model ele-
ment in the woven model has originated.

Categories and Subject Descriptors D.2.10 [Software Engineer-
ing]: Design; I.6.5 [Simulation and Modeling]: Model Develop-
ment

Keywords concern-driven software development, reuse, feature
models, impact models, traceability.

1. Introduction
This demonstration paper presents TouchCORE, a multi-touch en-
abled software design modelling tool aimed at developing scalable
and reusable software design models following the concern-driven
software development paradigm. The predecessor of TouchCORE
called TouchRAM was introduced initially at SLE 2012 [1], and
later demonstrated at Modularity:aosd 2013 [2] and 2014 [3] and
MODELS 2013 [4]. The most recent demonstration held at MOD-
ELS 2014 showcased how jUCMNav (a requirements modelling
tool) and TouchRAM have been integrated to provide initial sup-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MODULARITY Companion’15, March 16–19, 2015, Fort Collins, CO, USA.
Copyright c� 2015 ACM 978-1-4503-3283-5/15/03. . . $15.00.
http://dx.doi.org/10.1145/

port for concern-driven software development based on a common
metamodel [5].

As of early 2015, TouchCORE now provides full support for
concern-driven software development as outlined in this paper. Sec-
tion 2 briefly recalls the main concepts of concern-driven software
development. Section 3 describes TouchCORE’s support for fea-
ture model and impact model visualization and assessment tar-
geted at concern designers as well as concern users. Section 4 ex-
plains how traceability support was added to the CORE (Concern-
Oriented REuse) metamodel, which defines the key concepts of
concern-driven software development, to allow visualization of the
crosscutting nature of concerns in woven models. The last section
draws our conclusions.

2. Concern-Driven Software Development
In contrast to the focus of classic Model-Driven Engineering
(MDE) on models, the main unit of abstraction, construction, and
reasoning in Concern-Driven Software Development (CDD) is the
concern [6]. CDD seeks to address the challenge of how to enable
broad-scale, model-based reuse. A concern is a unit of reuse that
groups together software artifacts (models and code, henceforth
called simply models) describing properties and behaviour related
to any domain of interest to a software engineer at different levels
of abstraction.

A concern provides a three-part interface. The variation inter-
face describes required design decisions and their impact on high-
level system qualities, both explicitly expressed using feature mod-
els and goal models in the concern specification. The goal models
used in CDD are called impact models, because they describe the
impact of variable features on high-level system qualities. The cus-
tomization interface allows the chosen variation to be adapted to
a specific reuse context, while the usage interface defines how the
functionality encapsulated by a concern may eventually be used.

Building a concern is a non-trivial, time consuming task, typi-
cally done by or in consultation with a domain expert (subsequently
called the concern designer). On the other hand, reusing an exist-
ing concern is extremely simple, and essentially involves 3 steps
for the concern user: (1) Selecting the feature(s) of the concern
with the best impact on relevant goals and system qualities from the
variation interface of the concern. (2) Adapting the general models
of features of the concern that were selected to the specific appli-
cation context based on the customization interface. (3) Using the
functionality provided by the selected concern features as defined
in the usage interface within the application.

Figure 1. Visualization of Feature Model for Concern Designer

In general, MDE approaches rely heavily on tool support. Tool
support is even more important in the context of CDD, in particular
for the concern user:

• When selecting the set of features of a concern that best
meets the requirements of the application under develop-
ment, a concern user needs to be able to perform trade-off
analysis between different variations/implementations of the
needed functionality. To do that efficiently, a tool is needed
that performs real-time impact analysis of feature selections.
TouchCORE now provides this functionality as described in
Section 3.

• Once a selection is made, a tool is needed that composes the
models that realize the selected features to yield tailored mod-
els of the concern corresponding to the desired configuration.

• When adapting the generated concern models to the applica-
tion context, the concern user must map customization inter-
face elements from the concern to application-specific model
elements in the application. Tool support is helpful to ensure
that the mapping is specified correctly.

• Once the concern model is customized, a tool can help to en-
sure that the functionality provided by the concern is correctly
used.

3. Support for Feature Models and Impact
Models

In the context of concern-driven development, feature models cap-
ture the relationships and dependencies that exist between distinc-
tive user-visible aspects and characteristics of the software that
a concern modularizes and encapsulates. Impact models describe
the impact that choosing a particular feature has on non-functional
properties and qualities by means of goal models.

3.1 Visualization for the Concern Designer
The concern designer, i.e., the developer that creates the models
and code encapsulated within a concern, uses the feature model
to organize the features in a hierarchical “table of contents” that
facilitates reasoning about structural and behavioural dependencies
of the artifacts that realize the features encapsulated within the
concern. Therefore, in the concern-design mode, the TouchCORE
tool always displays the entire feature model of the current concern
to the concern designer (see Fig. 1).

In order to be able to do his job well, the concern designer
needs to not only be aware of all relevant information regarding the
organization of the current concern, but also which other concerns
this concern (or one of its features) reuses. To document the reuse
clearly and to communicate to the designer that he can depend
on functionality provided by the selected features of the reused
concerns, if desired, TouchCORE visualizes the selected features
of a reused concern as mandatory descendants of the feature of
the current concern that made the reuse. In CDD, it is possible to
delay the selection of variable features from a reused concern. In
this case, the concern designer of the current concern C does not
make a decision regarding variable features of the reused concern
R, but reexposes them to the concern user who will reuse the current
concern C in his new concern N and decide which reexposed
features to choose (or to reexpose them again). The features of
the reused concern that are reexposed by the current concern are
not visualized in the view of the concern designer (but they are
shown in the view of the concern user). This facilitates the task of
the designer of the current concern, since he is allowed to use the
structure and behaviour provided by selected features, but not by
reexposed ones.

TouchCORE also allows the concern designer to associate im-
pact models with the concern. Each impact model specifies quan-
titively how each feature that the concern encapsulates affects a
high-level goal or non-functional quality.

3.2 Visualization for the Concern User
The concern user, i.e., the developer that reuses an existing concern
within the software under development, consults the feature model
of a concern to discover the available functional variants and design
choices that the concern offers, and the impact each alternative has
on non-functional software properties. To make a choice, he needs
to maximally focus on deciding which variant offered by the con-
cern is best. Therefore, in the concern-reuse mode, the TouchCORE
tool only displays the optional choices (features with optional, OR,
and XOR dependencies) including reexposed features of the con-
cern that is being reused, omitting mandatory features or features
that are required/excluded by the current selection (see Fig. 2).

Whenever the current selection changes, TouchCORE automat-
ically evaluates the impact models of the concern and presents the
resulting satisfaction values of each high-level goal or quality to the
concern user to enable trade-off analysis. The interested reader is

Figure 2. Visualization of Feature Model for Concern User

referred to [7] for a detailed description of the feature model visu-
alization algorithms.

4. Traceability Support
Complex applications consist of many intertwined, interacting con-
cerns, and CDD advocates to develop an application by reusing as
many already existing concerns as possible. The same principle ap-
plies to the development of a concern itself. Typically, a require-
ments concern, e.g., security, needs to comprise not only models
that specify different ways of achieving security (authentication,
role-based access control, encryption, etc.), but also different ways
of realizing them (password-based authentication vs. biometrics,
etc.). For a given realization, there are different possible imple-
mentation architectures (centralized password server vs. local, dis-
tributed databases, etc.). It comes with no surprise that low-level
design solutions, such as various design patterns, transaction con-
trols, or resource allocation are quite general solutions that can be
reused in many designs.

To fully reap the benefits of reuse, CCD supports the creation
of concern hierarchies. To increase scalability and avoid duplica-
tion of effort, a high-level concern (or to be more precise, a fea-
ture of a high-level concern) can reuse the functionality (struc-
ture/behaviour/properties) of a lower-level concern when appropri-
ate. Similarly, a more domain-specific or solution-specific concern
can reuse other more general concerns.

Concern hierarchies allow the modeller to modularize the appli-
cation into different layers of abstraction. In order to reduce com-
plexity, concerns allow for separate reasoning, and hide the com-
plexity of the lower levels from the upper levels. Concerns can be
focussed on in isolation, and mappings between model elements
in different concerns are established to connect their structure and
behaviour when needed.

However, separation of concerns also makes it harder to under-
stand the detailed interaction between different concerns. This is
why traceability support is important in tools that support CCD,
and was recently integrated into TouchCORE.

4.1 Traceability Support in the Metamodel
Fig. 3 shows how the CORE metamodel was extended to support
tracing. Every COREModel can now contain many COREWoven-
Models. An instance of COREWovenModel has a name (inherited
from CORENamedElement), a reference that references the CORE-
Model that has been woven into the current model, and a set of
CORETraceableElements, which can, for example, be attributes,
operations or classes contained in the structural view.

RAMAspect

StructuralView
structuralView 1

CORENamedElement
- name: String

COREConcern COREModelmodels
2..* COREWovenModel

CORETraceableElement

wovenModels
0..*

wovenElements 1..*

comesFrom1

Classclasses
0..* Operationoperations

0..* Attribute

attributes 0..*

Figure 3. Tracing Integration into the (simplified) CORE Meta-
model

4.2 Traceability Support in the Weaver
In TouchCORE, weaving is performed in pairs. Whenever the
weaver is asked to weave model A into model B, it duplicates
B together with all the model elements it contains and names it
Woven_B. Then, all the model elements from A are copied into this
new model. In the post-processing phase, the weaver then decides if
certain structural model elements have to be merged. This could be
the case, if the modeller provided customization mappings between
A and B, and also for model elements with matching signatures in
the case where A and B realize features of the same concern. The
interested reader can find a detailed description of the structural
weaving algorithm in [1]. Behavioural weaving is described in [8].

To support tracing, the post-processing phase of the weaver
was extended as follows. Once the weaving is completed, a new
instance of COREWovenModel is created, its name initialized to the
model that was woven (i.e., A in our example) to obtain the name
in case the original model cannot be accessed, and the comesFrom
reference is set to point to A. Then, the set wovenElements is set to
contain all the elements that were either copied from A directly, or
that were merged with elements from A.

4.3 Traceability Visualization
Whenever a model contains information about other models that
were woven into it, a tracing view is shown as seen in Fig. 4 on
the bottom left. The view lists all COREWovenModels by name.
To see which elements were woven from a certain model, the
user can select one or more entries and the tool highlights the
corresponding woven elements in different colours. This allows

Figure 4. Visualization of Tracing Information

the user to understand where certain elements came from and, if
necessary, address issues.

5. Conclusion
This demonstration paper presented TouchCORE, a multi-touch en-
abled software design modelling tool aimed at developing scalable
and reusable software design models following the concern-driven
software development paradigm. Its predecessor, TouchRAM, al-
ready supported the specification of detailed design models us-
ing class, sequence and state diagrams. Furthermore, TouchRAM
enabled the definition of reusable design models using aspect-
oriented technology such as class merging, sequence diagram
weaving, and state diagram composition. TouchCORE builds on
top of this technology, and now provides full support for concern-
driven software development for both concern designers and con-
cern users.

The concern designer can define a concern that encapsulates all
relevant variations/design choices, and express the variability with
a feature model. Guidance on how to choose among those varia-
tions can now be specified with impact models that describe how
each feature affects high-level goals and non-functional require-
ments. TouchCORE assists the model designer by displaying the
entire feature model of the concern being designed, and addition-
ally visualizes selected features of reused concerns as mandatory
child features. On the other hand, the concern user is mainly in-
terested in discovering the available variants and design choices
that the concern offers and their impacts. Therefore, TouchCORE
presents a simplified feature model that only displays the available
choices including reexposed features to the concern user when a
reuse is initiated. In this case, the full impact model is hidden,
and only the evaluated satisfaction values for each high-level goal
are shown when the concern user selects the features he wishes to
reuse.

Finally, TouchCORE now also gathers tracing information
when generating complex woven models combining multiple con-
cerns and features. The tracing information is useful, e.g., for de-

bugging reasons, since it allows the modeller to visualize for each
model element from which concerns/features it originated. Further-
more, the visualized tracing information provides valuable insight
into the interactions between different concerns and their crosscut-
ting nature.

References
[1] W. Al Abed, V. Bonnet, M. Schöttle, O. Alam, and J. Kienzle,

“TouchRAM: A multitouch-enabled tool for aspect-oriented software
design,” in SLE 2012, no. 7745 in LNCS, pp. 275 – 285, Springer, Oc-
tober 2012.

[2] J. Kienzle, “Reusing Software Design Models with TouchRAM,” in
Companion of Modularity:AOSD 2013, pp. 23–26, ACM, March 2013.

[3] M. Schöttle, O. Alam, F.-P. Garcia, G. Mussbacher, and J. Kienzle,
“TouchRAM: A Multitouch-enabled Software Design Tool Supporting
Concern-oriented Reuse,” in Companion of Modularity:2014, pp. 25–
28, ACM, 2014.

[4] M. Schöttle, O. Alam, A. Ayed, and J. Kienzle, “Concern-Oriented
Software Design with TouchRAM,” in Proceedings of the Demonstra-
tions Track of the International Conference on Model Driven Engi-
neering Languages and Systems (MODELS 2013), vol. 1115 of CEUR
Workshop Proceedings, pp. 1 – 6, October 2013.

[5] N. Thimmegowda, O. Alam, M. Schöttle, W. Al Abed, T. Di’Meco,
L. Martellotto, G. Mussbacher, and J. Kienzle, “Concern-Driven Soft-
ware Development with jUCMNav and TouchRAM ,” in Proceed-
ings of the Demonstrations Track of the International Conference on
Model Driven Engineering Languages and Systems (MODELS 2014),
vol. 1255 of CEUR Workshop Proceedings, pp. 1 – 6, 2014.

[6] O. Alam, J. Kienzle, and G. Mussbacher, “Concern-oriented software
design,” in International Conference on Model-Driven Engineering
Languages and Systems - MODELS 2013, vol. 8107 of LNCS, pp. 604–
621, Springer, 2013.

[7] N. Thimmegowda and J. Kienzle, “Visualization Algorithms for Feature
Models in Concern-Driven Software Development,” in Short Paper
accepted at Modularity 2015, pp. 1 – 4, to be published.

[8] M. Schöttle, “Aspect-Oriented Behavior Modeling In Practice,” M.Sc.
Thesis, Department of Computer Science, Karlsruhe University of Ap-
plied Sciences, September 2012.

