
On the Modularization Provided by Concern-Oriented Reuse

Matthias Schöttle Omar Alam
Jörg Kienzle Gunter Mussbacher

McGill University, Montreal, QC H3A 0E9, Canada
{Matthias.Schoettle | Omar.Alam}@mail.mcgill.ca, {Joerg.Kienzle | Gunter.Mussbacher}@mcgill.ca

Abstract
Reuse is essential in modern software engineering, and hence
also in the context of model-driven engineering (MDE). Con-
cern-Oriented Reuse (CORE) proposes a new way of structuring
model-driven software development where models of the system
are modularized by domains of abstraction within units of reuse
called concerns. Within a concern, models are further decomposed
and modularized by views and features. High-level concerns can
reuse lower-level concerns, and models within a concern can extend
other models belonging to the same concern, resulting in complex
inter- and intra-concern dependencies. To clearly specify what de-
pendencies are allowed between models belonging to the same or
to different concerns, CORE advocates a three-part interface to
describe each concern (variation, customization, and usage inter-
faces). This paper presents the CORE metamodel that formalizes
the CORE concepts and enables the integration of different mod-
elling languages within the CORE framework.

Categories and Subject Descriptors D.2.10 [Software Engineer-
ing]: Design; I.6.5 [Simulation and Modeling]: Model Develop-
ment

Keywords model reuse, concern-orientation, model interfaces,
model dependencies, variability, composition

1. Introduction
MDE [4] is a unified conceptual framework in which software de-
velopment is seen as a process of model production, refinement,
and integration. To reduce the accidental complexity and the effort
needed to move from a problem domain to a software-based so-
lution, MDE advocates the use of different modelling formalisms,
i.e., modelling languages, to represent and analyze the system from
multiple points of view. For each level of abstraction, the modeller
uses the best formalism that concisely expresses the properties of
the system that are important to that level, and in such a way that
the concepts used in the language are close to the problem domain
at hand. During development, high-level specification models are
refined or combined with other models to include more solution
details, such as the chosen architecture, data structures, algorithms,
and finally even platform and execution environment-specific prop-
erties. The manipulation of models is achieved by means of model

transformations. Model refinement and integration continues until
a model (or code) is produced that can be executed.

However, MDE on its own is not a silver bullet against the com-
plexity of modern software development. To reduce the complexity
of reasoning, analyzing the problem, and constructing a software-
based solution, traditional software engineering principles such as
decomposition, interfaces, information hiding, levels of abstrac-
tion, and reuse are key. Unfortunately, the crosscutting nature of
most software development concerns is an obstacle for many clas-
sical modularization techniques that apply the aforementioned prin-
ciples in practice. To be effective, a flexible notion of modularity is
required, that allows to separate and package concerns in a reusable
way, and allows advanced composition mechanisms to introspect
modules and compose them to build a usable (i.e., analyzable, sim-
ulatable, and/or executable) representation of the solution.

Concern-Oriented Reuse (CORE) [3] is a new software devel-
opment paradigm inspired by the ideas of multi-dimensional sepa-
ration of concerns [18]. CORE builds on the disciplines of MDE,
software product lines (SPL) [14], goal modelling [6], and ad-
vanced modularization techniques offered by aspect-orientation [8,
15] to define flexible software modules that enable broad-scale
model-based software reuse. This paper discusses the CORE con-
cepts by presenting the CORE metamodel and reflects on how con-
cerns and concern hierarchies support modular software develop-
ment.

2. Concerns
A concern (COREConcern in Figure 1) is the main unit of mod-
ularization, abstraction, construction, and reasoning in the CORE
paradigm. It groups models that pertain to any domain of interest
to a software engineer. To increase the reuse potential, a concern
typically encapsulates not only one specific way of addressing the
domain of interest during software development, but many relevant
variations. Furthermore, the models within a concern span multi-
ple phases of software development and levels of abstraction. Each
concern has a root phase, where the concern manifests itself for the
first time. Some concerns appear in early phases of software de-
velopment, e.g., broadly scoped system properties with functional,
non-functional, or even intentional characteristics. Some concerns
appear in later phases of software development, e.g., solution-
specific concerns, e.g., specific communication protocols, concrete
authentication algorithms, or design patterns.

Models detailing different views of the concern are built for
the root phase and all follow-up phases using the most appropri-
ate modelling formalisms to express the properties of the concern
that are relevant during each phase. The models can use many mod-
elling notations, which need to offer advanced composition mecha-
nisms in order to handle the crosscutting nature of certain concerns.

extendingConfigurations
0..*

CO
REM

odel

CO
RECom

positionSpecification

CO
REPattern

CO
REBinding

 /m
odelElem

ents
0..*

from
1

CO
REIm

pactM
odel

CO
REM

odelReuse

reusedConcern
1

m
odels

1..*

0..*
m

appings

CO

REConcern

to
1

partiality: CO
REPartialityType

visibility: CO
REVisibilityType

CO
REM

odelElem
ent

CO
REFeatureM

odel

scalingFactor: real
offset: real

CO
REIm

pactNode

CO
REM

apping

0..*
compositions

source
1

CO
REReuseConfiguration

selectedConfiguration
0..1

configurations 0..*

CO
REReuse

m
odelReuses 0..*

1
featureM

odel

im
pactM

odel
0..1

0..* realizedBy

parentRelationship:
 CO

REFeatureRelationshipType

CO
REFeature

0..* realizes

0..* selected
reexposed 0..*

requires 0..*
0..* children

0..1
parent

0..* excludes
1..*

features

reuses 0..*

1 concern

relativeW
eight: int

CO
REContribution CO

REM
odelCom

positionSpecification

1 reuse

 CO
REIm

pact
M
odelBinding

weight: int
CO

REW
eightedM

apping

1 im
pacts

0..*
outgoing

0..* incom
ing

1source

{subsets}

 im
pactM

odelElem
ents
0..*

{subsets}

contributions 0..*

relativeFeatureW
eight: int

CO
REFeatureIm

pactNode

1represents
root 1

public
concern

<<enum
eration>>

CO
REVisibilityType

public
concern
none <<enum

eration>>
CO

REPartialityType

CO
REM

odelExtension

0..* m
odelExtensions

compositions
 0..*

extendedModel
1

lowerBound: int = 0
upperBound: int = 1

CO
REM

appingCardinalityDefinition

0..1
m

appingCardinality

CO
REM

appingCardinality

CO

REM
appingCardinalityReference

referencedCardinality
1

none
XO

R
O

R
m

andatory
optional

<<enum
eration>>

CO
REFeatureRelationshipType

{subsets}

{subsets}

CO
REConfiguration

CO
REConcernConfiguration

configurations 0..*

{subsets}

defaultConfiguration 0..1
{subsets}

{subsets}

0..* weightedM
appings

0..1

0..1

0..1

reuse
1

0..1

reusedConfiguration 0..1

0..1 extendingConfiguration

Figure
1.

The
C

O
R

E
M

etam
odel

3. Intra-Concern Modularity
3.1 View-Oriented Decomposition
Some concerns, in particular the ones that address broader devel-
opment concerns, encapsulate highly complex structure and be-
haviour. One way of decomposing the functionality of the con-
cern is to follow the MDE philosophy, and describe the properties
of interest using multiple models/views (COREConcern contains
multiple COREModel in Figure 1) at multiple levels of abstraction,
expressed using different modelling notations. In this case, “stan-
dard” MDE practice dictates that model transformations and/or
consistency rules link the models that are expressed in different
formalisms to ensure the coherence of the concern. For example,
in the current reference implementation of CORE [1, 17, 19], the
structure of software design concerns are specified using class dia-
grams, and the behaviour is modelled with sequence diagrams and
protocol state machines. OCL constraints and references between
the views ensure that the behaviour in the sequence diagram can
only access structural properties (e.g., attributes, associations) that
are defined in the class diagrams [16], and only invoke operations
on instances according to the protocols specified in the protocol
state machines [2]. Ensuring consistency between views is a well-
known challenge in MDE-based approaches . The effort it takes to
keep views consistent is view and modelling language dependent,
and hence not further covered by CORE.

3.2 Feature-Oriented Decomposition
Additional complexity stems from the fact that a concern encapsu-
lates multiple variants of addressing a domain of interest, similar
to what is done in SPL. To tame the complexity due to variabil-
ity, CORE provides modularization support within a concern using
features.

To this aim, each concern has an associated feature model
(COREFeatureModel), that is composed of features (class CORE-
Feature in Figure 1). Currently, CORE supports classic feature
trees as defined by Kang et al. [7].

The idea of modularization along features is that instead of cre-
ating large, monolithic models/views of a concern for each varia-
tion, the model is decomposed into many small models called re-
alization models. The realization models are linked with directed
extension dependencies (COREModelExtension). Typically, a real-
ization model containing only model elements pertaining to a sin-
gle feature extends other realization models whose model elements
it builds upon and which are potentially extended. I.e., realiza-
tion models can contain model elements that are shared by several
features. Which realization model belongs to which feature is en-
coded in the association realizedBy/realizes between COREFeature
and COREModel. The extension dependencies between realization
models form a hierarchy that is consistent with the parent/child de-
pendencies of the corresponding features.

Realization models in the upper levels of the extension hierar-
chy often also define partial model elements. Their role is to define
generic properties shared by a set of realization models, but require
to be completed with additional feature-dependent properties in or-
der to function correctly. The concern designer can explicitly tag
such model elements using the partiality attribute of COREMod-
elElement and set it to concern. For instance, a design realization
model for an Authentication concern might define a concern-partial
Credential class and a placeholder for an operation check to com-
pare credentials, so that the AuthenticationManager can use it to
validate an attempted authentication.

For a given realization model, the models related directly and
indirectly through extension dependencies form an extension tree.
It can be used to generate a complete model/view for any variant
by composing all realization models in the tree with each other.

By default, this composition is done with a simple name/signature-
based merge, as it is general practice in MDE (see, for example,
UML package merge [11]). If this is not sufficient, each extension
dependency can provide composition directives (COREModelCom-
positionSpecification), that use pattern expressions or bindings that
map (using COREMapping) elements from the current model to
model elements in the extended model.

For instance, name/signature-based merge is mostly sufficient
to compose design class diagram realization models, except when
partial model elements are defined in the extension tree. Then, com-
position specifications are used to specify which model elements
from the lower model complete the partial model elements defined
in the upper model. For example, the design realization model for
the Password feature of the Authentication concern would complete
the partial Credential class introduced above with a class called
Password that contains an encrypted String and defines a compari-
son operation checkPassword to complete the concern-partial oper-
ation check. This would be specified using a COREMapping from
Password to Credential, and from checkPassword to check.

On the other hand, composing behavioural designs expressed
using sequence diagrams requires even more sophisticated compo-
sition mechanisms that use patterns to express where the behaviour
defined in the current model should be positioned with respect to
the behaviour specified in the models that it extends [9].

3.2.1 Expressing Feature Interactions and Modularizing
Feature Conflict Resolutions

The existence of feature interactions is a well-known fact in the
SPL world, and they come in three flavours. In some cases, the
functionality of a feature is incompatible with the functionality
offered by one or several other features. The concern designer can
express such an unresolvable conflict using the reflexive excludes
relationship of COREFeature. In other cases, the functionality of
a feature can only be provided using the functionality of one or
several other features. This dependency is expressed using the
reflexive requires relationship of COREFeature.

The most elaborate form of feature interactions are resolv-
able conflicts. They occur when the simultaneous presence of
two or more features requires their individual structural and/or
behavioural realizations to be adapted. CORE allows the concern
designer to modularize this conflict resolution within separate re-
alization models, and link them to the features whose conflict they
resolve with the association realizes between COREModel and
COREFeature.

4. Inter-Concern Modularity
While the module boundaries between realization models within
the same concern are thin, the boundaries between concerns are
very rigid. This is intentional in order to simplify reuse for a
concern user. The user should be shielded from the complexity
encapsulated within the reused concern by the concern designer—
an expert of the domain that the concern addresses—as much as
possible.

In CORE, the boundaries between concerns are formalized with
three interfaces: the variation interface, the customization inter-
face, and the usage interface. They contain all the information that
a concern user needs to know in order to reuse a concern created
by a concern designer.

4.1 Variation Interface
The Variation Interface allows the concern designer to expose
to the concern user the available functional variants and design
choices that the concern offers, together with the impact of the
different alternatives on high-level stakeholder goals, qualities, and

non-functional requirements. For example, a security concern may
offer various means of authentication, from password-based to
biometrics-based solutions, each with differing impacts on the level
of security as well as cost and end-user convenience.

The different variants/choices are encoded in the feature model
introduced above. The structure of the feature tree and the na-
ture of the parent/child relationship (parentRelationship attribute of
COREFeature of type COREFeatureRelationshipType, which can
take the values mandatory, optional, or, or xor), as well as the re-
quires and excludes relations between features constrain the possi-
ble choices that are available to the concern user.

Additionally, the impact of selecting a feature on non-functional
goals and qualities is specified with an impact model [5]. CORE
currently only supports impact models that are expressed using a
variant of the Goal-oriented Requirement Language (GRL) [6]. We
choose goal models for impact analysis because goal models al-
low vague, hard-to-measure system qualities to be evaluated, such
as user convenience or security, in addition to more quantifiable
qualities, e.g., cost. Goal modelling is typically applied in early re-
quirements engineering activities to capture stakeholder and busi-
ness objectives, alternative ways of satisfying these objectives, and
the positive/negative impacts of these alternatives on various high-
level goals and quality aspects. The analysis of goal models guides
the decision-making process, which seeks to find the best suited al-
ternative for a particular situation. These principles also apply in
our context, where an impact model is a type of goal model that
describes the advantages and disadvantages of features offered by
a concern, and gives an indication of the impact of a selection of
features (COREConfiguration) on goals that are important to the
concern user. The impact model in CORE (COREImpactModel)
consists of an acyclic goal graph, modelled as impact nodes rep-
resenting goals (COREImpactNode) connected by weighted contri-
butions links (COREContribution).

4.1.1 Operationalizing the Variation Interface
While the variation interface concisely exposes the available vari-
ations and their impacts to the concern user, the concern designer
has to connect the features in the feature model with the impact
nodes of the impact model in order to operationalize the interface.

This link is established using feature impact nodes. For each
feature in a concern whose associated realization model have im-
pacts on non-functional goals and qualities, the concern designer
must create a COREFeatureImpactNode and link it to the impacted
COREImpactNodes using COREContribution links with the appro-
priate weight.

4.2 Customization Interface
Each realization model within a concern is described as generally
as possible to increase reusability. Therefore, some elements in
the models are only partially specified and need to be related or
complemented with concrete modelling elements of the application
that intends to reuse the concern. This is in contrast to partial
elements that are defined in a high-level realization model that have
to be completed by other realization models within the concern
as introduced in subsection 3.2. Partial elements defined in the
customization interface cannot be completed at design-time by
the concern designer, since they are placeholders for application-
specific structure and behaviour. As such, they are completed at
reuse-time by the application designer. For example, a Security
concern may define a generic User as a partial class that needs to
be merged with the concrete application classes that describe the
actual users of the system, e.g., Administrator or Employee.

The Customization Interface in CORE lists all model elements
in the realization models that have to be adapted to the context of a
specific application in order to be useable. Again, the partiality at-

tribute of type COREPartialityType in COREModelElement is used
for that purpose: every model element whose partiality attribute has
the value public is part of the customization interface.

As a result, there is no single customization interface for a con-
cern. On the contrary, for each possible configuration of a concern,
i.e., for each set of selected features, the corresponding customiza-
tion interface is defined by the union of all public partial model
elements of all realization models that realize the features of the
configuration and those that they extend. Given a configuration, it
can be generated by following the realizedBy and extendedModel
links.

4.3 Usage Interface
The Usage Interface is the classic kind of interface. It specifies
which model elements are accessible/visible to the outside world,
i.e., to the models that the concern user creates. In other words, it
defines how the concern user can access the functionality, i.e., the
structure and behaviour, provided by the concern. For example, the
usage interface of the design model of a concern is typically com-
prised of all public classes and methods made available by the con-
cern. For a Security concern this might include an authentication
operation that an administrator can invoke in order to gain access
to restricted behaviour, or a Password class that can be instantiated.

To designate those usable model elements, the CORE meta-
model defines a visibility attribute of type COREVisibilityType for
COREModelElement. By setting it to public, the concern designer
can expose any model element of a realization model to the outside
world.

Similarly to the customization interface, there is no single us-
age interface for a concern. This is not surprising, since different
features may offer different functionality. Therefore again, for each
possible configuration of a concern, the corresponding usage inter-
face is defined by the union of all publicly visible model elements
of all realization models that realize the features of the configura-
tion and those that they extend. Given a configuration, it can be
generated following the realizedBy and extendedModel links.

5. Concern Hierarchies
Complex applications consist of many intertwined, interacting con-
cerns, and CORE advocates developing an application by reusing
as many already existing concerns as possible. The same principle
applies to the development of a concern itself: in order to realize its
functionality, a high-level concern (called from now on a reusing
concern) is able to reuse the functionality of a lower-level con-
cern when appropriate. To this aim, a reusing concern can create
a COREReuse that refers to the concern that is to be reused (reused
concern), hence creating a concern hierarchy.

Typically, concerns that encapsulate domains that are at a higher
level of abstraction reuse concerns at a lower level of abstraction.
For example, an Authentication concern might reuse an Observer
design concern in its realization to notify the authentication servers
when a user updates his credentials, or within a Database concern
to store the user credentials. Similarly, a more domain-specific or
solution-specific concern can reuse other more general concerns.
For example, a UniversityAccounting concern might reuse a more
general Accounting concern to implement some of its functionality.

5.1 Reuse Process
While building a concern is a non-trivial, time consuming task,
typically done by or in consultation with a domain expert, reusing
an existing concern is extremely simple, and essentially involves
three steps:

1. The concern user must first select the feature(s) with the best
impact on relevant stakeholder goals and system qualities from

the variation interface of the concern based on tool-provided
impact analysis. Based on this configuration, the modelling tool
then merges the models that realize the selected features to yield
new models of the concern corresponding to the desired config-
uration. Depending on the root phase of the concern, the merg-
ing may involve requirement models and/or design models.
For composition at the requirements level with goal and work-
flow/scenario models, the interested reader is referred to [10]
for more details. For details on how this composition is done
for design concern models with structural and behavioural de-
scriptions based on class, sequence, and state diagrams, see [3].

2. Next, the concern user has to adapt the generated detailed mod-
els to the application context by mapping customization inter-
face elements to application-specific model elements. Again,
depending on the root phase of the concern, this step might re-
quire customizing requirement models and/or design models.

3. Finally, a software engineer can use the functionality provided
by the selected concern features which are exposed in the usage
interface within his own application models. In requirements
models, this may mean including workflow segments exposed
in the concern’s usage interface in the application’s workflow
models. In design models expressed using sequence diagrams,
for instance, using a concern may involve instantiating a class
exposed in the concern’s usage interface and/or calling one of
its public operations.

5.2 Variation and Impact Transparency
For each reuse, the concern designer of the reusing concern de-
cides what features of the reused concern are needed. To be pre-
cise, all realization models of the reusing concern that want to use
the functionality provided by the reused concern state which fea-
tures of the reused concern they want to rely on. They do that by
creating a COREModelReuse referring to the COREReuse with a
COREReuseConfiguration that designates the desired features (as-
sociation selected) of the reused concern. To increase future reuse
potential, the concern user (who is the concern designer of the
reusing concern) should select only the minimal set of features re-
quired for realization. Decisions between multiple alternative fea-
tures that provide the desired functionality, or about whether or not
to include optional features that provide additional functionality,
should not be made. Any such features that do not conflict with the
ones that were selected should be marked as reexposed (association
reexposed).

Using this information, the actual set of deferred decisions, i.e.,
the set of reexposed features from the reuse, is defined as the in-
tersection of all reexposed features of all COREModelReuses made
by realization models. These deferred decisions are automatically
propagated to the variation interface of the reusing concern, and
are as a result now available variants of the reusing concern.

Likewise, the non-functional qualities of the reusing concern are
heavily influenced by the qualities of the reused concern. There-
fore, all impacts of reused concerns are propagated to the variation
interface of the reusing concern. Since the concern designer of the
realization models of the reusing concern knows how the function-
ality of the reused concern is being used, she can create a CORE-
ModelReuse for the impact model of the reusing concern with
a COREImpactModelBinding that specifies COREWeightedMap-
pings to connect the impacts of the reused concern to the impacts
of the reusing concern.

5.3 Customization Translucency
Since the structure and behaviour of most lower-level concerns
crosscuts the upper levels (and the final application), any model
element of a reused concern can be customized. However, as ex-

plained in subsection 4.2, the partially defined model elements of a
reused concern that are exposed in the customization interface must
be customized in order to yield a runnable realization. Therefore,
any uncustomized model elements from the customization interface
of a reused concern are propagated to the customization interface
of the reusing concern.

5.4 Usage Opacity
In order to successfully reduce complexity, the concerns should
allow for separate reasoning. They should hide the complexity of
the lower levels from the upper levels, following the information
hiding principles advocated by Parnas [12, 13]. For this reason, the
usage interface of a reused concern is not visible in the interface
of a reusing concern, i.e., the value of the visibility attribute of all
model elements in the reused concern that are public are changed
to concern by the TouchCORE tool after the model composition is
complete.

6. Conclusion
This paper discussed the concepts of CORE that relate to modu-
larity by means of the CORE metamodel. Concern hierarchies al-
low the developer to organize software development into different
spheres of abstraction, where each sphere is a concern. Internally,
the concern can reuse other concerns, just like a big sphere can en-
capsulate smaller spheres. All the information that a concern user
needs to reuse a concern is available through the three interfaces,
i.e., at the shell of the sphere. However, the image of a sphere
breaks down when it comes to considering the properties of the
interfaces. While a shell is typically opaque and hard, the modu-
larization provided by concerns is flexible. The three interfaces are
opaque from a usage point of view in order to support information
hiding. They are translucent from a configuration point of view to
ensure complete adaptation to potentially unknown reuse context
and enable crosscutting composition with other concerns. Finally,
they are transparent from a variation and impact point of view in or-
der to expose impacts of reused concerns at the reusing concern’s
interface, and to propagate any undecided realization alternatives of
the reused concern to the reusing concern’s feature model interface.

Intra-concern modularity is provided by means of view- and
feature-oriented decomposition. Realization models within a con-
cern have complete visibility on each other if they need to, but must
declare such extension dependencies explicitly.

The CORE metamodel presented here has already been used
in practice to integrate the modularization capabilities offered by
CORE into two modelling notations, namely the User Require-
ments Notation and Reusable Aspect Models.

References
[1] TouchCORE Tool. http://touchcore.cs.mcgill.ca/.
[2] AL ABED, W., SCHÖTTLE, M., AYED, A., AND KIENZLE, J. Be-

havior Modeling – Foundations and Applications: International Work-
shops, BM-FA 2009-2014, Revised Selected Papers. Springer Interna-
tional Publishing, Cham, 2015, ch. Concern-Oriented Behaviour Mod-
elling with Sequence Diagrams and Protocol Models, pp. 250–278.

[3] ALAM, O., KIENZLE, J., AND MUSSBACHER, G. Concern-oriented
software design. In International Conference on Model-Driven Engi-
neering Languages and Systems - MODELS 2013 (2013), vol. 8107 of
LNCS, Springer, pp. 604–621.

[4] DOUGLAS C. SCHMIDT. Model-Driven Engineering. IEEE Computer
39 (2006), 41–47.

[5] DURAN, M., MUSSBACHER, G., THIMMEGOWDA, N., AND KIEN-
ZLE, J. On the reuse of goal models. In SDL 2015 (2015), Springer,
pp. 1–18.

[6] ITU. User Requirements Notation (URN), 2012.

http://touchcore.cs.mcgill.ca/

[7] KANG, K., COHEN, S., HESS, J., NOVAK, W., AND PETERSON,
S. Feature-oriented domain analysis (FODA) feasibility study. Tech.
Rep. CMU/SEI-90-TR-21, Software Engineering Institute, CMU,
1990.

[8] KIENZLE, J., Ed. Transactions on Aspect-Oriented Development
(TAOSD VII), Special Issue on a Common Case Study for Aspect-
Oriented Modeling, vol. 6210 of LNCS. Springer, 2010.

[9] KIENZLE, J., AL ABED, W., AND KLEIN, J. Aspect-Oriented Multi-
View Modeling. In Aspect-Oriented Software Development – AOSD
2009 (March 2009), ACM Press, pp. 87 – 98.

[10] MUSSBACHER, G., AMYOT, D., AND WHITTLE, J. Composing goal
and scenario models with the aspect-oriented user requirements nota-
tion based on syntax and semantics. In Aspect-Oriented Requirements
Engineering. Springer Berlin Heidelberg, 2013, pp. 77–99.

[11] OBJECT MANAGEMENT GROUP. Unified Modeling Language: Su-
perstructure (v2.4.1), December 2011.

[12] PARNAS, D. L. On the criteria to be used in decomposing systems
into modules. Communications of the ACM 15, 12 (Dec. 1972), 1053–
1058.

[13] PARNAS, D. L. A technique for software module specification with
examples. Communications of the Association of Computing Machin-
ery 15, 5 (May 1972), 330–336.

[14] POHL, K., BÖCKLE, G., AND VAN DER LINDEN, F. J. Software

Product Line Engineering: Foundations, Principles and Techniques.
Springer, 2005.

[15] R. FILMAN, T. ELRAD, S. CLARKE, M. AKŞIT. Aspect-Oriented
Software Development. Addison-Wesley, 2004.

[16] SCHÖTTLE, M., AND KIENZLE, J. On the Challenges of Compos-
ing Multi-View Models. In the GEMOC’13 Workshop co-located with
the 16th International Conference on Model Driven Engineering Lan-
guages and Systems (MODELS 2013) (October 2013).

[17] SCHÖTTLE, M., THIMMEGOWDA, N., ALAM, O., KIENZLE, J.,
AND MUSSBACHER, G. Feature modelling and traceability for
concern-driven software development with TouchCORE. In Compan-
ion Proceedings of MODULARITY 2015 (March 2015), pp. 11–14.

[18] TARR, P., OSSHER, H., HARRISON, W., AND SUTTON, JR., S. M.
N degrees of separation: Multi-dimensional separation of concerns. In
ICSE’1999 (May 1999), IEEE CS, pp. 107 – 119.

[19] THIMMEGOWDA, N., ALAM, O., SCHÖTTLE, M., ABED, W. A.,
DI’MECO, T., MARTELLOTTO, L., MUSSBACHER, G., AND KIEN-
ZLE, J. Concern-Driven Software Development with jUCMNav and
TouchRAM. In Proceedings of the Demonstrations Track of the
ACM/IEEE 17th International Conference on Model Driven Engineer-
ing Languages and Systems (MoDELS 2014), Valencia, Spain, Octo-
ber 1st and 2nd (2014), CEUR-WS.org.

	Introduction
	Concerns
	Intra-Concern Modularity
	View-Oriented Decomposition
	Feature-Oriented Decomposition
	Expressing Feature Interactions and Modularizing Feature Conflict Resolutions

	Inter-Concern Modularity
	Variation Interface
	Operationalizing the Variation Interface

	Customization Interface
	Usage Interface

	Concern Hierarchies
	Reuse Process
	Variation and Impact Transparency
	Customization Translucency
	Usage Opacity

	Conclusion

