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Abstract

Reuse is considered key to software engineering and is very common at the implementation level.
Many reusable libraries and frameworks exist and are widely reused. However, in the context of
Model-Driven Engineering (MDE) reuse is not very common. Most modelling approaches do not
support reuse, requiring a user to start their modelling activity either from scratch or copy and paste
pieces from other models.

This thesis provides a bridge for reusable units between implementation and modelling. We
apply the principles of Concern-Oriented Reuse (CORE), a next-generation reuse technology, to lift
existing frameworks up from the programming level to the modelling level. The level of abstraction
of the API of existing frameworks is raised to the modelling level to facilitate their reuse within
design models that are integrated within an MDE process. In addition, the benefits of the higher
level of abstraction are exploited to formalize otherwise informally provided information, such
as which features the framework provides, the impact of each feature on high-level goals and
non-functional qualities, how to adapt the framework to the reuse context, and how the API of
each feature is to be used. This thesis defines an automated algorithm that analyses the code of
a framework and example code that uses the framework to produce an interface that 1) lists the
user-perceivable features of the framework organized in a feature model, and 2) modularizes the
API of the framework API according to each feature. The algorithm is implemented and validated
on two small frameworks and the Android Notifications API along with an empirical user study.

To smoothen the transition from a high-level abstraction to a low level of abstraction, i.e., from
models to code, this thesis addresses the difficulty caused by the finality of signatures. We iden-
tify and discuss four difficult situations for defining high-level interfaces at the modelling level,
and present evidence that shows that these situations also exist at the implementation level. The
signature extension approach is introduced to CORE allowing interfaces to encompass diverse im-
plementation variants and to be evolved at a fine level of granularity across groups of features. We
re-design two reusable concerns to show that the approach addresses the four difficult situations.
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Abrégé

La réutilisation est essentielle dans l’ingénierie logicielle. La réutilisation de librairies et de frame-
works (cadre d’application) est très utilisée lors du niveau de l’implémentation. Il existe un nombre
important de frameworks et ils sont réutilisés fréquemment. Cependant, dans le contexte de l’in-
génierie dirigée par les modèles (Model-Driven Engineering (MDE)), la réutilisation de modèles
n’est pas très présente. La plupart des méthodes de modélisation ne supportent pas la réutilisa-
tion et demandent à l’utilisateur de soit commencer la modélisation de zéro ou de reprendre des
morceaux d’autres modèles.

Cette thèse crée un lien entre l’implémentation et la modélisation pour des unités réutili-
sables. Nous utilisons les principes de la réutilisation par préoccupation (Concern-Oriented Reuse
(CORE)), une nouvelle génération de technologies de réutilisation, pour monter les frameworks
du niveau de l’implémentation vers la modélisation. Le niveau d’abstraction de l’interface de pro-
grammation d’application (API) de framework existant est monté au niveau de la modélisation
pour faciliter leurs réutilisations dans un modèle de conception qui est intégré dans le processus
MDE. De plus, les avantages d’un niveau d’abstraction plus élevé sont utilisés pour formaliser de
l’information qui autrement n’existe que d’une manière informelle. Celle-ci nous permet de savoir
quelles fonctionnalités le framework propose, l’impact de chaque fonctionnalité sur des buts de
haut niveau et des qualités non-fonctionnelles, comment adapter le framework dans un contexte
de réutilisation et comment l’API de chaque fonctionnalité doit être utilisée. Cette thèse définit un
algorithme automatisé qui analyse le code d’un framework et les exemples de code qui utilisent
l’API pour produire une interface qui 1) liste les fonctionnalités utilisateur du framework organisée
dans un modèle de fonctionnalité, et 2) modularise l’API du framework selon chaque fonctionna-
lité. L’algorithme est implémenté et validé avec deux petits frameworks ainsi qu’avec une étude
utilisateur empirique de l’API de notification d’Android.

Pour faciliter la transition depuis un haut niveau d’abstraction vers un niveau d’abstraction
plus bas, c’est-à-dire, des modèles vers le code, cette thèse aborde les difficultés causées par la
finalité des signatures de méthode. Nous identifions quatre situations complexes lors de la création
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d’interfaces haut niveau au niveau du modèle et présentons des preuves qui montrent que ces si-
tuations existent également au niveau de l’implémentation. La méthode de l’extension de signature
est introduite à CORE, permettant aux interfaces d’intégrer plusieurs variantes d’implémentation
et d’évoluer dans le détail à travers un groupe de fonctionnalités. Nous redéfinissons deux concerns
réutilisables pour montrer que cette méthode répond à ces quatre situations complexes.

iii



Acknowledgements

Here it finally is! A long journey is coming to an end and there are many people I would like to
thank for their support, without which this thesis could not have been completed.

First and foremost, I express my sincerest gratitude to my advisor Jörg Kienzle for his trust,
guidance, patience, friendship, and generous support. He gave me the freedom and flexibility to
explore my own interests and also to lead the development of our TouchCORE tool. I am very
grateful for his constant optimism and confidence in me, and his patience with my perfectionism.
He always kept the big picture in mind and brought me back when I was stuck in the details. I
very much enjoyed the intense intellectual discussions, sense of humour, and discussions outside
of research. I also truly appreciate the privilege to attend conferences and many Bellairs workshops
that allowed me to meet many smart people and gave a stimulating and enriching experience.

I am grateful and thank the members of my committee, Jin Guo, Gunter Mussbacher and Houari
Sahraoui, as well as my external examiner Krzysztof Czarnecki, and my internal examiner Clark
Verbrugge, for reviewing my work and their valuable feedback and comments. I also thank Alexan-
dre Denault and Michael Hawker for taking time out of their busy schedules for the interviews, as
well as the participants of the Android Notifications API study for providing their feedback.

During these years I was fortunate to work with many colleagues and form friendships in the
Software Engineering Lab. Specifically, I would like to thank Berk Duran for his continued friend-
ship and bringing life into the lab. I thank everyone for making our lab a great place and all the
interesting discussions, lunches and fun we have had together: Berk, Céline, Julien, Max, Nirmal,
Nishanth, Omar, and Rohit. I had the opportunity to lead the development of the TouchCORE tool
and work with and co-supervise many students: Andrea, Céline, Emmanuel, Franz-Philippe, Nir-
mal, Nishanth, and Rohit. During the summers we were often joined by interns from France that
made it a lot of fun (although not that productive for research :-)). I wish to thank (in order of ap-
pearance): Laura, Thomas, Cécile, Romain, Jehan, Arthur, and Josué. I also thank everyone else of
the CORE group for the fruitful and intense discussions and feedback during our group meetings.
Special thanks goes to Arthur for his help with translating the abstract to French.

iv



I would like to express my gratitude to my friends and family for their love, support, patience
and understanding. I especially thank my parents for their support and understanding when I came
to visit but had to work. I also thank the parents of my wife for their hospitality during parts of
the thesis writing. Special thanks goes to my friend Harald for his genuine interest in my work and
progress, and his help in disseminating the invitation of my user study.

I thank my son Finn for his joy, smiles and playful energy.
And finally, words can not express the gratitude I have for my wife Stéphanie. Without her,

this thesis would not have been possible. Thank you for embarking with me on this journey and
your wonderful love, support, and patience. Thank you for all your sacrifices, and your devotion in
looking after Finn. Thank you for your constant encouragement and always believing in me when
I doubted myself.

v



Related Publications

Earlier versions of parts of this thesis were published as listed below. The first author is the main
author who contributed the majority of the work to the publication.

• Matthias Schöttle and Jörg Kienzle. Concern-Oriented Interfaces for Model-Based Reuse
of APIs. In Proceedings of the 18th ACM/IEEE International Conference on Model Driven
Engineering Languages and Systems (MODELS 2015), pp. 286–291. IEEE Press, 2015.
(Chapter 3)

• Matthias Schöttle and Jörg Kienzle. On the Difficulties of Raising the Level of Abstrac-
tion and Facilitating Reuse in Software Modelling: The Case for Signature Extension.
In Proceedings of the 11th International Workshop on Modelling in Software Engineering
(MiSE 2019, co-located with ICSE), pp. 71–77. IEEE Press, 2019. (Chapter 8)

• Matthias Schöttle, Omar Alam, Franz-Philippe Garcia, Gunter Mussbacher, and Jörg Kien-
zle. TouchRAM: A Multitouch-Enabled Software Design Tool Supporting Concern-
Oriented Reuse. In Proceedings of the Companion Publication of the 13th International
Conference on Modularity (MODULARITY 2014), pp. 25–28. ACM, 2014. (Section 5.6.1)

• Matthias Schöttle, Nishanth Thimmegowda, Omar Alam, Jörg Kienzle, and Gunter Muss-
bacher. Feature Modelling and Traceability for Concern-driven Software Development
with TouchCORE. In Companion Proceedings of the 14th International Conference on
Modularity (MODULARITY Companion 2015), pp. 11–14. ACM, 2015. (Section 5.6.1)

• Matthias Schöttle, Omar Alam, Jörg Kienzle, and Gunter Mussbacher. On the Modulariza-
tion Provided by Concern-Oriented Reuse. In Companion Proceedings of the 15th Inter-
national Conference on Modularity (MODULARITY Companion 2016), pp. 184–189. ACM,
2016. (Section 2.4)

vi



The following publications were produced in parallel to the research described in this thesis and
are not directly related to this thesis.

• Benoit Combemale, Jörg Kienzle, Gunter Mussbacher, Olivier Barais, Erwan Bousse, Walter
Cazzola, Philippe Collet, Thomas Degueule, Robert Heinrich, Jean-Marc Jézéquel, Manuel
Leduc, Tanja Mayerhofer, Sébastien Mosser, Matthias Schöttle, Misha Strittmatter, and An-
dreas Wortmann. Concern-Oriented Language Development (COLD): Fostering Reuse
in Language Engineering. Computer Languages, Systems & Structures 54 (2018), pp. 139–
155.

• Céline Bensoussan, Matthias Schöttle, and Jörg Kienzle. Associations in MDE: A Concern-
Oriented, Reusable Solution. In Proceedings of the 12th European Conference on Mod-
elling Foundations and Applications (ECMFA 2016), pp. 121–137. Springer International
Publishing, 2016.

• Jörg Kienzle, Gunter Mussbacher, Omar Alam, Matthias Schöttle, Nicolas Belloir, Philippe
Collet, Benoît Combemale, Julien DeAntoni, Jacques Klein, and Bernhard Rumpe. VCU:
The Three Dimensions of Reuse. In Software Reuse: Bridging with Social-Awareness –
15th International Conference (ICSR 2016), pp. 122–137. Springer International Publishing,
2016.

• Wisam Abed, Matthias Schöttle, Abir Ayed, and Jörg Kienzle. Concern-Oriented Behaviour
Modelling with Sequence Diagrams and Protocol Models. In Revised Selected Papers of
the International Workshops on Behavior Modeling – Foundations and Applications (BM-
FA). Lecture Notes in Computer Science, vol. 6368, pp. 250–278. Springer-Verlag New York,
2015.

• Gunter Mussbacher, Daniel Amyot, Ruth Breu, Jean-Michel Bruel, Betty H. C. Cheng,
Philippe Collet, Benoit Combemale, Robert B. France, Rogardt Heldal, James Hill, Jörg
Kienzle, Matthias Schöttle, Friedrich Steimann, Dave Stikkolorum, and Jon Whittle. The
Relevance of Model-Driven Engineering Thirty Years from Now. In Proceedings of the
17th ACM/IEEE International Conference on Model Driven Engineering Languages and
Systems (MODELS 2014), pp.183–200. Springer International Publishing, 2014.

• Romain Alexandre, Cécile Camillieri, Mustafa Berk Duran, Aldo Navea Pina, Matthias
Schöttle, Jörg Kienzle, and Gunter Mussbacher. Support for Evaluation of Impact Models
in Reuse Hierarchies with jUCMNav and TouchCORE. In Proceedings of the MODELS
2015 Demo and Poster Session co-located with ACM/IEEE 18th International Conference

vii



on Model Driven Engineering Languages and Systems (MODELS 2015), pp. 28–31. CEUR-
WS.org, 2015.

• Nishanth Thimmegowda, Omar Alam, Matthias Schöttle, Wisam Al Abed, Thomas Di’Meco,
Laura Martellotto, Gunter Mussbacher, and Jörg Kienzle. Concern-Driven Software Devel-
opment with jUCMNav and TouchRAM. In Proceedings of the Demonstrations Track of
the ACM/IEEE 17th International Conference on Model Driven Engineering Languages and
Systems (MODELS 2014). CEUR-WS.org, 2014.

• Matthias Schöttle, Omar Alam, Gunter Mussbacher, and Jörg Kienzle. Specification of
Domain-specific Languages Based on Concern Interfaces. In Proceedings of the 13th
Workshop on Foundations of Aspect-Oriented Languages (FOAL 2014), pp. 23–28. ACM,
2014.

• Matthias Schöttle and Jörg Kienzle. On the Challenges of Composing Multi-View Mod-
els. In Proceedings of the First Workshop On the Globalization of Modeling Languages
(GEMOC 2013) co-located with the 16th International Conference on Model Driven Engi-
neering Languages and Systems (MODELS 2013). 2013.

• Matthias Schöttle, Omar Alam, Abir Ayed, and Jörg Kienzle. Concern-Oriented Soft-
ware Design with TouchRAM. In Joint Proceedings of MODELS’13 Invited Talks, Demon-
stration Session, Poster Session, and ACM Student Research Competition co-located with
the 16th International Conference on Model Driven Engineering Languages and Systems
(MODELS 2013), pp. 51–55. CEUR-WS.org, 2013.

• Omar Alam, Matthias Schöttle, and Jörg Kienzle. Revising the Comparison Criteria for
Composition. In Proceedings of the Fourth International Comparing Modeling Approaches
Workshop 2013 co-located with the ACM/IEEE 16th International Conference on Model
Driven Engineering Languages and Systems (MODELS 2013). CEUR-WS.org, 2013.

• Wisam Al Abed, Valentin Bonnet, Matthias Schöttle, Engin Yildirim, Omar Alam, and Jörg
Kienzle. TouchRAM: A Multitouch-Enabled Tool for Aspect-Oriented Software De-
sign. In Proceedings of the 5th International Conference on Software Language Engineering
(SLE 2012), pp. 275–285. Springer Berlin Heidelberg, 2012.

viii



Contents

List of Figures xvi

List of Tables xix

List of Algorithms xx

List of Listings xxi

List of Acronyms xxii

I Prologue 1

1 Introduction 2
1.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Thesis Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Background 8
2.1 Model-Driven Engineering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Metamodelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Separation of Concerns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3.1 Aspect-Orientation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3.2 Aspect-Oriented Modelling . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 Concern-Oriented Reuse (CORE) . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4.1 Three Interfaces of Reuse . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4.1.1 Variation Interface . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4.1.2 Customization Interface . . . . . . . . . . . . . . . . . . . . . . 14

ix



2.4.1.3 Usage Interface . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4.2 Reuse Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4.3 Composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4.4 Delaying Decisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4.5 CORE Metamodel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4.5.1 Concern and Models . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4.5.2 Feature Realizations and Model Compositions . . . . . . . . . . 19
2.4.5.3 Model Element Cardinalities . . . . . . . . . . . . . . . . . . . 20

2.5 Reusable Aspect Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.5.1 Structural View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.5.2 Message View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.5.3 State View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.5.4 Mapping Cardinalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.5.5 Composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.6 TouchCORE Tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

II Concernification: Raising the Abstraction Level of Frameworks 28

3 Concernification Overview 29
3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2 General Idea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.3 Benefits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3.1 Documents and Organizes Features . . . . . . . . . . . . . . . . . . . . . 31
3.3.2 Provides Impacts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.3.3 Tailors the API to the User’s Needs . . . . . . . . . . . . . . . . . . . . . 31
3.3.4 Provides Usage Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.3.5 Guarantees Correct Reuse . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.3.6 Provides Glue Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.4 Concernification Steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.5 Concernification by Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.5.1 Variation Interface of Minueto . . . . . . . . . . . . . . . . . . . . . . . . 35
3.5.1.1 Minueto Feature Model . . . . . . . . . . . . . . . . . . . . . . 35
3.5.1.2 Impact Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.5.2 Usage Interface of Minueto . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.5.2.1 Minueto API . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

x



3.5.2.2 Usage Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.5.3 Customization Interface of Minueto . . . . . . . . . . . . . . . . . . . . . 42

3.5.3.1 Guaranteeing Correct Reuse . . . . . . . . . . . . . . . . . . . . 42
3.5.3.2 Glue Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.6 Reusing a Concernified Framework . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4 Validating the Minueto Feature Model 48
4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.2 Study Participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.3 Study Set-Up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.4 Data Analysis and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.4.1 Information used for Feature Model Creation . . . . . . . . . . . . . . . . 51
4.4.2 Feature Model Variations . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.4.2.1 Feature Models of D1 . . . . . . . . . . . . . . . . . . . . . . . 52
4.4.2.2 Feature Models of D2 . . . . . . . . . . . . . . . . . . . . . . . 55
4.4.2.3 Investigator Feature Models . . . . . . . . . . . . . . . . . . . . 57
4.4.2.4 Feature Model Comparison . . . . . . . . . . . . . . . . . . . . 59

4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.5.1 Configurations provided by Feature Model . . . . . . . . . . . . . . . . . 60
4.5.2 Naming of Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.5.3 Feature Model Granularity . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.5.4 Mapping from Feature to API . . . . . . . . . . . . . . . . . . . . . . . . 61
4.5.5 Applicability of Concernification . . . . . . . . . . . . . . . . . . . . . . 62

4.6 Study Limitations and Threats to Validity . . . . . . . . . . . . . . . . . . . . . . 62
4.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5 Automated Concernification 65
5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.2 Guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.3 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.4 Hypotheses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.5 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.5.1 Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.5.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.5.3 Auxiliary Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

xi



5.5.4 Initializing Hierarchies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.5.5 Propagating Example Usage . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.5.6 Removing Unused Nodes and Elements . . . . . . . . . . . . . . . . . . . 79
5.5.7 Simplifying Hierarchies . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.5.8 Pulling Operations Out . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.5.9 Connecting the Individual Hierarchies . . . . . . . . . . . . . . . . . . . . 85
5.5.10 Merging Similar Nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.5.11 Adding Cross-references . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.5.12 Graph Simplification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.5.12.1 Merging Mandatory API Elements . . . . . . . . . . . . . . . . 91
5.5.12.2 Merging Equivalent Groups . . . . . . . . . . . . . . . . . . . . 91
5.5.12.3 Merging Utility Nodes . . . . . . . . . . . . . . . . . . . . . . . 91
5.5.12.4 Transitive Reduction . . . . . . . . . . . . . . . . . . . . . . . . 92
5.5.12.5 Edge Simplification . . . . . . . . . . . . . . . . . . . . . . . . 94
5.5.12.6 Reducing the Feature Model size . . . . . . . . . . . . . . . . . 96

5.5.13 Converting to a Feature Model . . . . . . . . . . . . . . . . . . . . . . . . 96
5.6 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.6.1 Supporting Concernification in TouchCORE . . . . . . . . . . . . . . . . 97
5.6.1.1 Support for Importing Implementation Classes into a Design

Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
5.6.1.2 Support for Code Generation . . . . . . . . . . . . . . . . . . . 98
5.6.1.3 Support for Traceability . . . . . . . . . . . . . . . . . . . . . . 99

5.6.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.6.3 Importer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.6.4 Example Parser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.6.5 Concernifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.6.6 Visualizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
5.6.7 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6 Automated Concernification Validation 106
6.1 Evaluation of the Workflow Concern . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.1.1 Accuracy of Feature Detection . . . . . . . . . . . . . . . . . . . . . . . . 108
6.1.2 Accuracy of API Element Assignment . . . . . . . . . . . . . . . . . . . . 110
6.1.3 Accuracy of Customization Interface . . . . . . . . . . . . . . . . . . . . 112

6.2 Evaluation of Feature Model Accuracy for Minueto . . . . . . . . . . . . . . . . . 112

xii



6.3 Qualitative Study with Android Notifications . . . . . . . . . . . . . . . . . . . . 116
6.3.1 Study Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.3.1.1 Selection of Examples . . . . . . . . . . . . . . . . . . . . . . . 117
6.3.1.2 Focus on Backward Compatible Notifications . . . . . . . . . . 118
6.3.1.3 Performing Automated Concernification . . . . . . . . . . . . . 119

6.3.2 Study Task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
6.3.3 Study Participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
6.3.4 Data Analysis and Results . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6.3.4.1 Features and their Relationships . . . . . . . . . . . . . . . . . . 122
6.3.4.2 Missing Features . . . . . . . . . . . . . . . . . . . . . . . . . . 123
6.3.4.3 Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
6.3.4.4 API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
6.3.4.5 Analysis Summary . . . . . . . . . . . . . . . . . . . . . . . . . 126

6.3.5 Study Limitations and Threats to Validity . . . . . . . . . . . . . . . . . . 127
6.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

7 Related Work 130
7.1 Concernification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

7.1.1 Design Fragments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
7.1.2 Framework-Specific Modeling Languages . . . . . . . . . . . . . . . . . . 132
7.1.3 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

7.2 Automated Concernification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

III Signature Extension: Fine-Grained Abstraction 139

8 The Need for Flexible Operation Signatures 140
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
8.2 On Reuse, Interfaces and Signatures . . . . . . . . . . . . . . . . . . . . . . . . . 141
8.3 Problematic Situations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

8.3.1 Difficulties Defining a Common Interface for Alternative Implementations 143
8.3.2 Difficulties Adding New Functionality . . . . . . . . . . . . . . . . . . . . 144
8.3.3 Difficulties Providing a Callback Interface that fits all Reuse Contexts . . . 145
8.3.4 Difficulties Delaying Design Decisions . . . . . . . . . . . . . . . . . . . 146

8.4 Validating the Need for Flexible Signatures . . . . . . . . . . . . . . . . . . . . . 147
8.4.1 Exploring the Java Platform API . . . . . . . . . . . . . . . . . . . . . . . 148

xiii



8.4.1.1 Adding Optional Functionality . . . . . . . . . . . . . . . . . . 150
8.4.1.2 Providing a Common Interface for Alternative Implementations . 151

8.4.2 Exploring Workarounds in Programming Languages . . . . . . . . . . . . 151
8.4.2.1 Adding Additional Functionality . . . . . . . . . . . . . . . . . 152
8.4.2.2 Providing a Callback Interface that fits all Reuse Contexts . . . . 152

8.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

9 The Signature Extension Approach 154
9.1 Requirements for Extending Signatures . . . . . . . . . . . . . . . . . . . . . . . 154

9.1.1 Extending Signatures Structurally . . . . . . . . . . . . . . . . . . . . . . 154
9.1.2 Extending Signatures Behaviourally . . . . . . . . . . . . . . . . . . . . . 156

9.2 Adding Structural Signature Extension Support to Class Diagrams . . . . . . . . . 156
9.3 Structural Composition of Signatures . . . . . . . . . . . . . . . . . . . . . . . . . 161
9.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
9.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

10 Case Studies 165
10.1 Association Concern Design with Signature Extension . . . . . . . . . . . . . . . 165
10.2 Resource Management: Running Example Revisited . . . . . . . . . . . . . . . . 167

10.2.1 Capability Design Extension . . . . . . . . . . . . . . . . . . . . . . . . . 168
10.2.2 Allocation Cost Design Extension . . . . . . . . . . . . . . . . . . . . . . 169
10.2.3 Delaying of Decisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
10.2.4 Composed Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

10.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

IV Epilogue 176

11 Conclusions & Future Work 177
11.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
11.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

Bibliography 183

A CORE Metamodel 196

B Interview Guide for Developers of Minueto 198

xiv



C List of Examples Provided with Minueto 200

xv



List of Figures

2.1 Layers of Metamodelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 The Feature Model of the Observer Concern. . . . . . . . . . . . . . . . . . . . . 13
2.3 The Impact Model of the Observer Concern. . . . . . . . . . . . . . . . . . . . . 13
2.4 General Overview of a Concern in the CORE Metamodel. . . . . . . . . . . . . . 17
2.5 The Feature Model part of the CORE Metamodel. . . . . . . . . . . . . . . . . . 18
2.6 The Impact Model part of the CORE Metamodel. . . . . . . . . . . . . . . . . . . 18
2.7 The Realization Models and their Compositions in the CORE Metamodel. . . . . 19
2.8 The Reuse part of the CORE Metamodel. . . . . . . . . . . . . . . . . . . . . . . 20
2.9 The Model Element Compositions part of the CORE Metamodel. . . . . . . . . . 21
2.10 The Structural View for the Observer Feature of the Observer Concern. . . . . . . 22
2.11 The Structural View for the Push Feature of the Observer Concern. . . . . . . . . 23
2.12 The Message Views for the Observer Feature of the Observer Concern. . . . . . . 23
2.13 The Aspect Message View for Notifying Observers. . . . . . . . . . . . . . . . . . 24
2.14 The State View for the Observer Class of the Base Feature of the Observer

Concern. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.15 The Structural View for the Observer Feature of the Observer Concern with Map-

ping Cardinalities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.16 The Composed Model of the Observer Concern including Mapping Cardinalities. 26

3.1 Hand-Made Minueto Feature Model . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2 Minueto Impact Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.3 The Interface of the Feature Visual (sub-feature of Minueto) . . . . . . . . . . . . 37
3.4 The Interface of the Feature Surface (sub-feature of Visual) . . . . . . . . . . . . 38
3.5 The Interface of the Feature Windowed (sub-feature of Surface) . . . . . . . . . . 38
3.6 The Interface of the Class MinuetoTool and the Relation of its Methods to

Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

xvi



3.7 The Interface of the Feature Keyboard (sub-feature of Interactive) . . . . . . . . . 39
3.8 The Protocol Model of the Feature Surface for the MinuetoWindow Interface . 40
3.9 The Protocol Model of the Feature Interactive for the MinuetoEventQueue

Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.10 The Interface of the Feature Keyboard with the Partial KeyboardHandler Class 42
3.11 The Interface of the Feature Surface with Added Glue Code Structure . . . . . . . 44
3.12 The Partial Glue Code Behaviour of the Feature Surface . . . . . . . . . . . . . . 45

4.1 The initial feature model created by D1 (D11) . . . . . . . . . . . . . . . . . . . 52
4.2 The updated feature model of D1 elaborated during the interview (D12a), increas-

ing the level of granularity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.3 The refined updated feature model of D1 elaborated during the interview (D12b) . 54
4.4 Evolution of feature models by D1 . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.5 The initial feature model created by D2 (D21) . . . . . . . . . . . . . . . . . . . 55
4.6 The updated feature model of D2 elaborated during the interview (D22) . . . . . . 56
4.7 Evolution of feature models by D2 . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.8 The initial feature model I1 elaborated by the investigator . . . . . . . . . . . . . 58
4.9 The updated feature model I2 based on feedback from the participants . . . . . . . 58

5.1 Overview of the Concernification Algorithm . . . . . . . . . . . . . . . . . . . . 72
5.2 Class Diagram of Running Example . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.3 Intermediate result after initializing hierarchies (roots of hierarchies shown in grey) 78
5.4 Intermediate result after propagating example usage (updated nodes highlighted

with thick stroke) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.5 Intermediate result after simplifying hierarchies (updated nodes highlighted with

thick stroke) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.6 Intermediate result after pulling operations out of their class (new or updated

nodes and edges highlighted with thick stroke) . . . . . . . . . . . . . . . . . . . 84
5.7 Intermediate result after connecting the roots (new or updated nodes and edges

highlighted with thick stroke, package nodes with a dashed border) . . . . . . . . 87
5.8 Intermediate result after merging nodes with the same example usage (merged

nodes highlighted with thick border) . . . . . . . . . . . . . . . . . . . . . . . . 88
5.9 Intermediate result after adding cross-reference edges (added crossref edges are

highlighted with thick stroke) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.10 Intermediate result after the first part of graph simplification (updated nodes high-

lighted with a thick stroke, edges with a dashed line still need to be simplified) . . 93

xvii



5.11 Final result after the edge simplification (root shown in grey) . . . . . . . . . . . 95
5.12 The Resulting Feature Model for the Running Example . . . . . . . . . . . . . . 97
5.13 Overview of the Main Components of the Automated Concernification Implemen-

tation and the Flow of Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.14 Screenshot of the Visualizer component visualizing the final graph after concerni-

fying the Workflow concern framework . . . . . . . . . . . . . . . . . . . . . . . 102

6.1 Workflow Feature Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
6.2 Feature Models of Worig (top) and Wac (bottom) . . . . . . . . . . . . . . . . . . 109
6.3 Resulting Graph of Workflow after Automated Concernification . . . . . . . . . . 109
6.4 Minueto Feature Models of MI (top) and Mac (bottom) . . . . . . . . . . . . . . 113
6.5 Android Notifications Feature Model determined by Automated Concernification . 120
6.6 Automated Concernification Study Website . . . . . . . . . . . . . . . . . . . . . 121
6.7 Viewing the API of a Feature on the Automated Concernification Study Website . 121

8.1 Resource Management Base Design . . . . . . . . . . . . . . . . . . . . . . . . . 144
8.2 Resource Management Feature Model . . . . . . . . . . . . . . . . . . . . . . . 144
8.3 Association Feature Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

9.1 Class Diagram Metamodel Excerpt for Mappings and Classes . . . . . . . . . . . 157
9.2 The Updated Structural Design Model of the Observer Concern with Support for

Signature Extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
9.3 Supporting Custom Callback Values in the Observer . . . . . . . . . . . . . . . . 160

10.1 Association Signature Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . 166
10.2 Resource Management Base Design . . . . . . . . . . . . . . . . . . . . . . . . . 167
10.3 Behaviour for Checking the Availability of a Resource . . . . . . . . . . . . . . . 168
10.4 Behaviour for Allocating a Resource to a Task . . . . . . . . . . . . . . . . . . . 168
10.5 Behaviour for Finding Available Resources . . . . . . . . . . . . . . . . . . . . . 169
10.6 Capability Structural Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
10.7 Allocation Cost Structural Design . . . . . . . . . . . . . . . . . . . . . . . . . . 170
10.8 Behaviour for Finding Available Resources . . . . . . . . . . . . . . . . . . . . . 172
10.9 Updated Allocation Cost Structural Design . . . . . . . . . . . . . . . . . . . . . 172
10.10 Optional Database Support Structural Design . . . . . . . . . . . . . . . . . . . . 173
10.11 Composed Structure of Resource Management with Different Feature Selections . 174

A.1 The Complete CORE Metamodel. . . . . . . . . . . . . . . . . . . . . . . . . . . 197

xviii



List of Tables

3.1 Comparison of API Size Based on Feature Selection . . . . . . . . . . . . . . . . 46

4.1 Feature Model Metrics of D12b and D22 . . . . . . . . . . . . . . . . . . . . . . . 57
4.2 Feature model metrics for all feature models (rows in bold highlight the final fea-

ture model version of each person) . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.1 Performance Metrics of the Importer . . . . . . . . . . . . . . . . . . . . . . . . . 103
5.2 Performance Metrics of the ExampleParser . . . . . . . . . . . . . . . . . . . . . 103
5.3 Performance Metrics of the Concernifier . . . . . . . . . . . . . . . . . . . . . . . 104

6.1 API Metrics based on Feature Selection of Wac . . . . . . . . . . . . . . . . . . . 111

8.1 Gathered Data of the java.base Module . . . . . . . . . . . . . . . . . . . . . . . 149
8.2 Gathered Data of All Method Groups of the java.base Module . . . . . . . . . . . 149

xix



List of Algorithms

5.1 Concernification Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.2 Merging Two Nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.3 Replacing an Existing Edge in the Graph . . . . . . . . . . . . . . . . . . . . . . . 75
5.4 Moving Node Properties to Another Node . . . . . . . . . . . . . . . . . . . . . . 76
5.5 Removing a Node from the Graph . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.6 Creating the Initial Hierarchy for all Classes . . . . . . . . . . . . . . . . . . . . . 77
5.7 Propagating the Example Usage within a Hierarchy . . . . . . . . . . . . . . . . . 79
5.8 Removing Unused Nodes and Elements . . . . . . . . . . . . . . . . . . . . . . . 80
5.9 Simplifying a Hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.10 Pulling Operations Out of their Class . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.11 Establishing a DAG with a Single Root . . . . . . . . . . . . . . . . . . . . . . . . 86
5.12 Merging Nodes with the Same Usage . . . . . . . . . . . . . . . . . . . . . . . . 87
5.13 Adding Cross-references to the Graph . . . . . . . . . . . . . . . . . . . . . . . . 89

xx



List of Listings

3.1 Main Code to Run an Application with Minueto Including Handling of Events . . . 43
9.1 Example Mappings when Reusing Observer . . . . . . . . . . . . . . . . . . . . . 159
10.1 Signature Extension Mappings of the add Operation . . . . . . . . . . . . . . . . 167
10.2 Mappings of the Capability Feature . . . . . . . . . . . . . . . . . . . . . . . . . 171
10.3 Mappings of the Optional Database Support Feature . . . . . . . . . . . . . . . . 173

xxi



List of Acronyms

AOM Aspect-Oriented Modelling
AOP Aspect-Oriented Programming
AOSD Aspect-Oriented Software Development
API Application Programming Interface
CI Customization Interface
CORE Concern-Oriented Reuse
DAG Directed Acyclic Graph
EBNF extended Backus-Naur form
EMF Eclipse Modeling Framework
EMOF Essential MOF
FAQ Frequently Asked Questions
GRL Goal-Oriented Requirement Language
MDE Model-Driven Engineering
MOF Meta-Object Facility
OO Object-Oriented
OOP Object-Oriented Programming
RAM Reusable Aspect Models
SoC Separation of Concerns
SPL Software Product Line
UI Usage Interface
UML Unified Modeling Language
VCU Variation, Customization and Usage (Interfaces)
VI Variation Interface

xxii



Part I

Prologue

1



1
Introduction

Methodical reuse of software artefacts is considered key to software engineering [65, 70]. Instead
of creating all functionality from scratch, common and recurring functionality is reused. This func-
tionality is typically packaged into frameworks or libraries with the purpose of making it reusable.
They are usually well maintained, continuously improved, and come with good quality textual
documentation and different forms of code examples. Many are publicly available, available as
open source and have large communities. In addition, companies are interested in reusing existing
software artefacts in order to amortize development costs by increasing quality, productivity, and
time-to-market [66, 74].

Model-Driven Engineering (MDE) [21,32] advocates the use of different modelling formalisms
during software development, so that the right level of abstraction is chosen to reason about the sys-
tem under development depending on the needs. To move towards an executable implementation,
high-level, problem-centric models are gradually refined or transformed to progressively integrate
solution and platform details. MDE aims to reduce accidental complexity and helps dealing with
the complexity of the problem to be solved. MDE improves development productivity as well as
the quality of the end product [50, 75, 122].

Although MDE technology has been available for more than two decades, adoption of MDE
in industry is slow and not widespread [49, 105, 124]. One of the reasons is that reuse at the mod-
elling level is not common. We see this being caused by several factors. First, hardly any mod-
elling language offers all the language features required to build reusable models, i.e., language
constructs for expressing modularization, encapsulation and composition. As a result, reuse at a
higher-level of abstraction, i.e., a reusable architecture or design, typically takes the form of a
pattern or style, and not a reusable model with a clear reuse interface. Second, it is currently
not well understood how reuse should integrate with the top-down philosophy of MDE, where
first platform-independent “higher-level” models are being built and refined to platform-specific
“lower-level” models, from which eventually executable code is generated. Reuse could happen

2



Introduction

within a level of abstraction to build complex reusable units by combining reusable units of lower
complexity, for example, when building the design of a bank application a reusable unit providing
the design for authentication functionality could be reused. Also, reuse could happen across levels
of abstraction, for example, when reusing within a design a programming language framework.

Due to the above, model libraries or repositories for reusable models are very uncommon.
Models are either designed from scratch or bits and pieces are copy-and-pasted from other models.
While some model repositories exist [22,117], they mainly focus on collecting example models or
do not have a large community behind them.

At the implementation level, however, modern programming languages already provide out-of-
the-box a large number of classes for different functionality. On top of that, reusable code artefacts
in the form of libraries and frameworks are abundant, well maintained and widely and readily
available to developers. Availability of frameworks and libraries has risen dramatically since open-
source software adoption has increased [107]. There exist large repositories of reusable code arte-
facts. For instance, the Central Maven Repository1, which is primarily used for Java in combina-
tion with the Maven build system, contains more than 290,000 unique artefacts2. npm is a package
manager for JavaScript, its package registry contains more than 1 million unique packages3.

However, reuse at the implementation level has problems as well. Most frameworks come as
a monolithic code block. Developers need to find out and understand how to adapt the reusable
entities to their own needs, and then how to use the usage interface (API) correctly. While frame-
works generally provide many different artefacts that explain the framework along with the code
itself, such as documentation, API reference, tutorials, How Tos, demos, etc., the manner in which
this information is presented is typically unstructured, scattered and informal. Furthermore, doc-
umentation can be ambiguous or incomplete [120]. Many frameworks come with a large feature
set, and developers spend a lot of time understanding how to use them properly. While tutorials
show how to use them in a general way, it is not always clear how to correctly reuse the knowledge
in the tutorial for a specific development project. Also, even though a developer might only want
to use a small feature set of a framework, he is nevertheless confronted with the complete API.
This can lead to incorrect reuse, which can have serious consequences, e.g., in security-critical
cases can expose vulnerabilities [45]. Reuse at the implementation level by means of frameworks
also hinders separation of concerns, as the business and application logic and the glue code for
the reused artefact are often tangled. Lastly, evolution of frameworks is difficult, as either binary
compatibility needs to be maintained, or the framework users are required to update all glue code.
If the required effort is too high, developers do not update to newer versions [89].

1https://search.maven.org
2https://search.maven.org/stats
3http://www.modulecounts.com
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1.1 Problem Statement

1.1 Problem Statement
There clearly exists a gap between the modelling and the programming worlds. While at the mod-
elling level reuse is not common, the higher level of abstraction allows developers to more easily
deal with the complexity of the problem domain and reason about it. At the implementation level,
there exist many high quality class libraries and frameworks ready to be reused at the code level.
In standard MDE it would require considerable time and effort to make the same functionality
available to the modeller. In addition, re-creating equivalent functionality at the model level is er-
ror prone. Since the classes and methods of a framework are already implemented in code, they
should therefore not be re-defined at the modelling level, but their functionality should nevertheless
be accessible from within design models. At the same time, the higher level of abstraction should
be used to formalize information of reusable artefacts to make it easier for users to reuse.

A step towards improved reuse is provided by the Concern-Oriented Reuse (CORE) approach,
a next-generation reuse technology [4]. Its main unit of abstraction is the concern. A concern
provides a three-part interface to document the functional variations, how to customize the chosen
functionality of the concern to the reuse context, and how to use the provided functionality of
the concern. CORE makes it possible to build reusable models and collect them in a reusable
model library. However, the library of reusable concerns is currently small, making it difficult to
create software systems without re-creating a large part of functionality, which would normally be
accomplished by reusing existing frameworks.

Therefore, this thesis attempts to answer the following research question:

How can existing functionality available at the implementation level be reused at the
modelling level with minimal effort and the higher level of abstraction be exploited to
benefit reuse?

1.2 Thesis Contributions
This thesis provides a solution to bridge the gap between the modelling and implementation level
by providing a connection between the design at the modelling level and the code at the implemen-
tation level.

We propose Concernification as a new approach that raises the level of abstraction of reusable
code artifacts (frameworks) to the modelling level. The benefits are two-fold. First, existing func-
tionality that is provided through frameworks and libraries and can already be reused at the im-
plementation level can now be reused at the modelling level as well. Second, reuse of frameworks
is simplified, as the concern interface presents a high-level, formal, organized view of the user
features that a framework provides to the user, and is modularized in such a way that it can ex-
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pose only the subset of the framework’s API that a user needs. Modularizing the API exposed the
need for an incremental refinement of interfaces across several variants. This thesis also proposes
Signature Extension to deal the finality of method signatures present in Object-Orientation.

Concretely, the thesis makes the following contributions which are organized into two parts:
Part I Concernification:

• A new approach called Concernification which applies the principles of Concern-Oriented
Reuse (CORE) to framework reuse. Concernification raises the level of abstraction of reusable
code artefacts (frameworks) to the modelling level. The concern interface formalizes and
documents what the framework provides to the user. It provides a high-level, formal, orga-
nized view of the user features that a framework provides, and only exposes a subset of the
framework’s API tailored to the user’s needs. By explicitly modelling the three interfaces
(variation, customization, and usage) of a concern a framework is formalized from the user’s
perspective. This provides several benefits to the user of a framework, such as documenting
the variations, guiding the user on making a choice based on the impact on high-level goals,
providing a tailored API, documenting the generic elements that need to be customized,
expressing the usage protocol of the API, and providing “glue code” that is always required.

– A definition of the steps necessary to successfully create a concern interface of an
existing framework.

– A demonstration of how the concern interface for an existing framework is determined
and created. This is illustrated using an existing framework called Minueto. We cre-
ated this concern interface of Minueto by familiarizing ourselves with the API and the
various available resources that are provided along with the framework.

– A qualitative study with the two developers of Minueto. The developers are the domain
experts of the framework. This study presents validation of the accuracy of our Min-
ueto concern interface. We also report on insights gained from interviewing the two
developers in relation to concernification and variations of feature models.

• A complete description of an algorithm to automatically create an initial concern interface
of a framework. The algorithm discovers the features of the framework, organizes them in a
feature model and modularizes the API in accordance with the features. The qualitative study
with the Minueto developers confirmed our intuition of which information from a framework
and its code documentation to use to determine the concern interface. The automated con-
cernification algorithm uses structural relationships of the API and the usage of the API from
examples provided with a framework to determine an initial concern interface.
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– An implementation of the automated concernification algorithm using the backend
components of the TouchCORE tool. To facilitate fully the concernification of exist-
ing code, the TouchCORE tool is extended with support for importing existing code
as implementation classes into a design model, generating code from design models,
and traceability to understand which feature an API element belongs to in a composed
model.

– A validation of the automated concernification algorithm on three frameworks. Specifi-
cally, Workflow was designed as a concern first which means that the feature model with
the features and their corresponding API is known. The Minueto concern interface was
validated with the developers and therefore allows comparison to the automatically de-
termined concern interface. To evaluate whether the algorithm provides accurate results
on a third and bigger framework that is used in industry, it is performed on the notifica-
tions part of the Android platform. The results are validated using a qualitative study in
which Android app developers familiar with the notifications API of Android provided
feedback.

Part II: Signature Extension

• A new approach called Signature Extension which supports the incremental refinement of
interfaces across several variants. It helps to overcome the rigid nature of signatures by al-
lowing declared signatures to be extended with additional parameters.

– An identification and description of four difficult situations that are caused by the final-
ity of method signature declarations.

– An empirical study on the Java Platform API that highlights the existence of these
difficult situations in the Java API. In addition, the thesis outlines various workarounds
that address these difficult situations proposed for different programming languages.

– A novel way of extending method signatures called Signature Extension allowing method
signatures to evolve across different variations. The Signature Extension approach makes
it possible to extend method signatures structurally and behaviourally.

– An extension of class diagrams as defined in the Reusable Aspect Models (RAM) lan-
guage in CORE to support the structural extension of method signatures. This includes
an extension to the class diagram composition to deal with evolving signatures.

– An application of the Signature Extension approach to two reusable concerns.
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1.3 Thesis Organization
The remainder of this thesis is organized as follows. Chapter 2 provides relevant background in
the context of Model-Driven Engineering (MDE), Concern-Oriented Reuse (CORE) and Reusable
Aspect Models (RAM).

The first part of this thesis presents Concernification that makes it possible to raise the abstrac-
tion level of frameworks to the modelling level. Chapter 3 introduces the idea of concernification,
its benefits and steps. Furthermore, Concernification of a framework is shown based on an example
of the Minueto framework. Chapter 4 then reports on a qualitative study with the two developers of
Minueto to validate the concern interface determined in Chapter 3. To automate the process of con-
cernification, Chapter 5 presents an algorithm to automatically concernify the API of a framework
based on the structural relationships of the API and the usage of the API in examples. Chap-
ter 6 evaluates the accuracy of the Automated Concernification algorithm using three frameworks.
Chapter 7 presents an overview of existing work related to Concernification as well as Automated
Concernification.

The second part of this thesis presents Signature Extension that enables the fine-grained ab-
straction of method signatures at the modelling level. Chapter 8 identifies the need for Signature
Extension by discussing four difficult situations that are caused by the finality of signatures once
declared. In addition, an empirical study is discussed that shows evidence of difficult situations in
the Java Platform API, and workarounds in programming languages to overcome some difficul-
ties are described. Chapter 9 presents the Signature Extension approach as well as the extension
of class diagrams with support for structural signature extension. Chapter 10 presents evidence
that Signature Extension overcomes the four identified difficulties by re-designing two reusable
concerns.

Finally, Chapter 11 summarizes this thesis and discusses potential avenues for future work.
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2
Background

This chapter introduces the methodologies, concepts and approaches that this thesis is based on
and that are relevant for the understanding of this thesis.

We introduce the idea of Model-Driven Engineering in Section 2.1. We then discuss in Sec-
tion 2.2 metamodelling, an essential process in building modelling languages and tools. In Sec-
tion 2.3, we describe Separation of Concerns in software development in general, as well as ad-
vanced separation of concern techniques in the form of aspect-orientation. This thesis is in the
context of Concern-Oriented Reuse (CORE), which we introduce in detail in Section 2.4. Finally,
in Section 2.5, we describe Reusable Aspect Models (RAM) as one modelling language that is
integrated into CORE. Both CORE and RAM are explained using a running example to showcase
the various models that are involved.

2.1 Model-Driven Engineering
Model-Driven Engineering (MDE) [32] advocates the use of models as the primary artefact at
every stage of the development lifecycle. It attempts to provide a way to deal with the increasing
complexity of software development and promises to improve productivity and software quality.
Models are used as an abstraction of the system under development.

MDE advocates the use of different modelling formalisms, so that the most appropriate mod-
elling notation is chosen to reason about the system under development depending on the needs and
level of abstraction. To move towards an executable implementation, high-level, problem-centric
models are gradually refined or transformed to progressively integrate solution and platform de-
tails.

Reasoning at a higher level of abstraction also allows the inclusion of different stakeholders to
participate and gather early feedback. This facilitates the detection of errors early in the lifecycle.
Furthermore, the use of domain-specific notations allows domain expert themselves to work on the
solution of the problem instead of using experts that are knowledgeable in the solution domain.
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While various forms of modelling have long been used, such as sketches, informal diagrams,
etc., these are often used in a model-based sense [21], i.e., as a form of documentation or com-
munication of ideas, but not (or only indirectly) connected to the source code of the system that is
being built. Such a situation occurs, for example, when a class diagram defining the domain model
of a system is being used as a blueprint for developers when they start their implementation effort.
A model-driven process, however, can use models as an input for a model-to-text transformation
to produce the implementation (or parts thereof) in an automated way. This is also known as code
generation. To support the use of precise models during the development process, MDE tools are
usually built using metamodels which define the valid concepts and structure that models are cre-
ated with. This allows one to write tools and transformations that can support any model built using
the supported metamodel.

2.2 Metamodelling
Metamodelling [21, 108] is the process of defining a formal definition of the syntax for modelling
languages. A metamodel describes the structure a model must adhere to, i.e., the abstract syntax of
a modelling language. Models can then be created that conform to the metamodel. This means that
the metamodel is an abstraction of the model. The elements of the model are instances of elements
in the metamodel.

Going further, the metamodel is defined by the meta-metamodel. Usually, the meta-metamodel
can be described in itself and as such, there is no further need for defining languages at even higher
levels of abstraction. Essentially, this culminates in a four layer approach, where each layer is usu-
ally numbered from 0 to 3 (or vice-versa). Going bottom-up, the real-world subject is represented
by the instance model. Usually, the instance model is an abstraction of the real world subject, be-
cause it describes only the properties of interest. The instance model is an instance of model, which
is an instance of the metamodel. The metamodel in turn is an instance of the meta-metamodel.

Figure 2.1 shows the four layers of metamodelling on the left-hand side, and the following
example on the right-hand side. In this example, an instance model describes the book 1984 by
George Orwell. The model describes books in general, i.e., that they have a title and author. The
metamodel that the Book Model is described with can be a UML class diagram [81] (i.e., meta-
model), which is based on the Meta-Object Facility (MOF) [80] (i.e., the meta-metamodel). The
core part of MOF is defined in Essential MOF (EMOF). Its de facto reference implementation is
Ecore, which is provided by the Eclipse Modeling Framework (EMF) [109]. A similarity of the
four layer approach can be drawn to grammars in that a grammar (metamodel) is defined using
EBNF (i.e., meta-metamodel).
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Figure 2.1: Layers of Metamodelling

2.3 Separation of Concerns
Separation of concerns (SoC) [28, 29] is a key design principle in software development where a
program is separated into distinct parts with as little overlap as possible. A concern is any piece
of interest and can be seen as a feature of a program. SoC can be achieved by striving for encap-
sulation (using information hiding) and modularity [20, 85]. This helps reduce the complexity of
software construction as well as software maintainability, and can enable the reuse of functionality.

Object-Orientation, for example, provides a way to decompose a system into units of primary
functionality called modules (classes). The ability to distinguish between public (accessible from
the outside) and private members of a class provides encapsulation and hides the internals of a
class to the outside. From the outside, the interface (API) provides the contract to the outside
world. However, this only provides decomposition along a single dimension (objects) [111] and
does not allow the separation of cross-cutting concerns. Certain concerns of a system, such as
logging, caching, authentication, etc., cross-cut the entire system. Their code is scattered across
all affected modules of the system. This results in code tangling, i.e., the code of cross-cutting
concerns is intermixed with business logic.

2.3.1 Aspect-Orientation
As a result of dealing with cross-cutting concerns, advanced separation of concern techniques
have been proposed. These techniques allow the separation of concerns along additional dimen-
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sions. A well-known methodology is Aspect-Oriented Software Development (AOSD) [41], which
addresses the identification, specification and separate expression of cross-cutting concerns in the
software development lifecycle.

Cross-cutting concerns can be expressed separately, and it can be specified where in the system
they should be applied. In AOSD, concerns are usually called aspects. To retrieve the final system,
all aspects are combined by composition at the specified places.

While aspects can be applied at different levels of abstraction, they evolved from first being
introduced at the implementation level, known as Aspect-Oriented Programming (AOP) [59]. As-
pectJ [58] is the most widely-known language providing aspects for Java, however, most aspect-
oriented programming languages share common concepts on how aspects are defined and applied.

So called join points define, for a given language, where in a program an aspect can be applied.
In AspectJ, for example, join points include when a method is executed or called, a field is read or
modified, an object is instantiated, etc. A developer can use pointcuts to designate the concrete join
points of a program where the aspect should be applied. The advice defines the structure and/or
behaviour that should be added at a matched pointcut. Most commonly, it is possible to define
whether additional behaviour should be added before, after, or around the identified join point.

2.3.2 Aspect-Oriented Modelling
Applying aspect-oriented principles only at the source code level creates a gap between the earlier
phases of the software development process and the implementation phase. Thus, Aspect-Oriented
Modelling (AOM) emerged enabling aspect-oriented techniques to be applied at higher levels of ab-
straction [96]. Aspects play a role within the complete software development process. This makes
it possible to bridge the gap between different phases and facilitates traceability of concerns across
the software development lifecycle.

AOM techniques use different kinds of patterns (a pointcut is one of them) and different ways of
composition. They can generally be divided into symmetric and asymmetric approaches. Asymmet-
ric approaches make a distinction between cross-cutting concerns and the base of the application.
Symmetric approaches, however, do not have this distinction and the whole system is composed
from aspects.

2.4 Concern-Oriented Reuse (CORE)
Concern-Oriented Reuse (CORE) [4] is a next-generation reuse approach inspired by the ideas
of multi-dimensional separation of concerns [111]. CORE builds on the ideas of MDE, software
product lines (SPL) [86], goal modelling [53], and advanced modularization techniques offered
by aspect-orientation. CORE seeks to address the challenge of how to enable broad-scale, model-
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based software reuse [65, 70].
In contrast to the focus of classic MDE on models, the main unit of abstraction, construction,

and reasoning in CORE is the concern. A concern is a unit of reuse that groups together software
artefacts (models and code, henceforth called simply models) describing properties and behaviour
related to any domain of interest to a software engineer at different levels of abstraction. It con-
tains all models required for the domain of interest and the models may span all phases of the
software development lifecycle, i.e., requirements, analysis, design, testing and implementation
models. A concern in CORE is broader and usually provides different variants of the functionality
it encapsulates. CORE advocates developing an application by reusing as many already existing
concerns as possible. In order to realize the functionality of a concern, a concern itself can reuse
the functionality of lower-level concerns. This creates a concern hierarchy.

In the context of reuse, at least two clearly distinct software development roles arise. The
designer of the reusable unit is an expert of the domain of the development issue that the unit
addresses. She has a deep understanding of the nature of the issue, is able to identify variations
of the problem and can therefore potentially identify user-relevant variations or features. Because
the designer elaborates and implements the solution artifacts, she knows the exact implementation
details, their properties and qualities, and the trade-offs that she decided to make. However, the
designer does not know in what contexts and how exactly the reusable unit may be used in the fu-
ture. Therefore, in addition to realizing the solutions, the designer strives to make the reusable unit
as versatile and generic as possible, so that the solutions can be applied in a wide variety of reuse
contexts. This might again involve coming up with multiple, functionally equivalent, yet different
variants of realizations in terms of qualities and non-functional properties, e.g., varying memory
footprint or performance. Finally, the designer needs to modularize and package the reusable unit
to make it available to others, e.g., in form of a library or framework. There is no doubt that building
a reusable unit is a challenging, non-trivial, time consuming task for the designer.

A user of a reusable unit on the other hand is an expert of the application he is developing.
He is aware of the specific requirements of the system he is working on. At some point, the user
might become aware that the software needs to deal with a specific development issue for which an
existing reusable unit is available. The user typically knows very little about the complexity of the
recurring development issue, and even less about the implementation details of different solutions
to the issue offered by the reusable unit. To make reuse possible and safe, the user needs to be able
to determine whether the reusable unit is applicable to their system. He has to be able to determine
which solution, in case the reusable unit offers more than one, is most appropriate for the specific
application context. He needs to be able to customize the reusable unit to his specific reuse context,
and then must use the reusable unit correctly.
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Figure 2.3: The Impact Model of the Observer Concern.

2.4.1 Three Interfaces of Reuse
In order to facilitate reuse of artefacts, a concern provides a three-part interface [63]. The variation
interface, customization interface, and usage interface formalize the boundaries between concerns.
They contain all the information a concern user needs to know in order to reuse a concern created
by a concern designer.

2.4.1.1 Variation Interface

The variation interface (VI) describes the required design decisions and their impact on high-
level system qualities, both explicitly expressed using feature and impact models in the concern
specification. The feature model [57] describes the available functional variants and design choices
the concern offers. The features are structured in a tree with non-root features having a relationship
to their parent (mandatory, optional, XOR or OR). Additionally, cross-tree constraints (requires
or excludes) support the definition of additional relationships. For example, Figure 2.2 shows a
concern design of the Observer design pattern [44]. It has two alternative variations (XOR) for
notification methods, push-based or pull-based.

The impact model is expressed using a variant of the Goal-Oriented Requirement Language
(GRL) [53]. It captures the high-level goals and non-functional properties and describes how the
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features of the feature model impact these goals. The weights of the contributions of the features are
specified using relative values [34]. The concern designer as the domain expert knows the details of
the implementation and establishes these values. For some high-level goals, such as performance,
measurements or benchmarks can be performed to determine them. For example, as Figure 2.3
shows, the push and pull-based notification methods of the Observer concern impact the high-
level goals Minimize Message Exchange and Increase Performance. While a pull-based notification
method minimizes the message exchange, the push-based one increases the performance for small
data.

2.4.1.2 Customization Interface

The customization interface (CI) allows the chosen variation of a concern to be adapted to a specific
reuse context. In order to facilitate reuse of concerns, the concern designer cannot fully specify ev-
erything of the concern as it depends on the context in which it is reused. Therefore, such elements
in the models can only be specified partially. They are placeholders and need to be completed by
the concern user. Essentially, the customization interface shows to the concern user the elements
that need to be customized. For example, to use the Observer concern in the design, it provides
partial classes for the subject and observer. A concern user needs to specify which elements in the
application should play these roles. In essence, the Observer concern provides the required struc-
ture and behaviour for the functionality to observe subjects and receive notifications when they are
modified.

2.4.1.3 Usage Interface

The usage interface (UI) defines how the functionality encapsulated by a concern may be used.
In order to ensure information hiding, the details of the design are encapsulated from the outside.
The UI specifies which model elements are visible and accessible from the outside to trigger the
functionality provided by the concern. In this way, the usage interface is the API of the concern.
For example, a design model’s usage interface is typically comprised of all the public classes and
methods. In the Observer concern, the usage interface might include the methods to start and stop
observing a subject that can be called on the observer.

2.4.2 Reuse Process
As outlined above, building a concern is a non-trivial, time-consuming task, typically done by or
in consultation with a domain expert. The initial effort to create a concern that is reusable is high.
On the other hand, reusing an existing concern is extremely simple, and essentially involves three
steps for the concern user:

1. Selecting the feature(s) of the concern with the best impact on relevant goals and system
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qualities from the variation interface of the concern. The concern user may do trade-off
analysis between the different possible configurations to find the solution that best satisfies
the relevant goals.

2. Adapting the general models of features of the concern that were selected to the specific
application context based on the customization interface. The partial elements of the chosen
variant must be mapped to the concrete elements of the application.

3. Using the functionality provided by the selected concern features within the application as
defined in the usage interface.

CORE advocates developing a concern by reusing as many existing concerns as possible. That
way, a concern designer often also plays the role of a concern user for another concern. To that
effect, CORE provides a reusable concern library to which concern designers can contribute their
reusable concerns. Concern users can then reuse these concerns for their purposes. Ideally, an open-
source community will emerge in which concerns are continuously refined based on feedback and
contributions in a similar way that can be observed in the open-source software world.

2.4.3 Composition
In CORE, each feature is realized by one or more models. Each realization model provides the
realization of that feature for one of the views onto the concern. For example, design models
provide the detailed design in realizing features using class and sequence diagrams to model the
structure and behaviour. In general, CORE advocates an additive approach, i.e., realization models
of children features build upon the realization model of their parent feature. Therefore, the child
realization model extends the parent realization model.

When a concern user chooses a set of features of a concern, all their realization models (and
their ancestors) are pair-wise composed together. This is performed for each language using the
homogenous composition operator of the language. The composition algorithm also maintains
tracing information, which keeps track of which elements of the composed model belong to which
feature, which can help the user in understanding the composed model.

2.4.4 Delaying Decisions
Software product line development (SPL) [86] is an approach that is beneficial when developing a
collection of similar software systems—a family of products—that share some commonalities and
differ in a well-defined set of features exposed by the SPL. Reuse [65, 70] in the context of SPL is
therefore planned in advance. When the needs of a user are clear, the set of features corresponding
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to the needs of the user is selected and a specific application—called product in SPL terms—is
derived.

Choosing the best variant works in the context of SPL, as at the moment of product derivation
all requirements are known. This is different in the case of concerns where the functionality that is
being designed will be reused itself. As such, a concern designer reusing another concern does not
know the final requirements of the application and can therefore not always make all decisions in
advance, as it depends on the context in which it is being reused.

As such, CORE has been designed in such a way that decisions can be delayed as long as
possible [64]. Only those features that are known to be required need to be selected. Features that
could be useful, but a decision can not be made at the time of initial reuse, can be re-exposed.
A partial configuration contains feature selections and features that have been re-exposed. CORE
can handle partial configurations, i.e., CORE will allow the concern designer that is reusing some
other concern to customize and use the functionality provided by the selected features of the reused
concern, while leaving additional decisions up to the concern user of the concern that is being
designed. Those users can then make an additional decision if additional requirements are known
or choose to further delay the decision(s), if needed.

For example, a concern reusing the Observer concern outlined in Section 2.4.1 might not be
able to make the decision between a pull-based or push-based observer as this affects the perfor-
mance and therefore chooses to delay this decision.

2.4.5 CORE Metamodel
To provide a thorough understanding of CORE, we present here the CORE metamodel [100] high-
lighting relevant parts pertinent to this thesis. The full metamodel is shown in appendix A.

CORE provides a common framework for concerns and reuse using the three interfaces (see
Section 2.4.1). It has extension points in the form of abstract classes1 where language designers
can plug in to corify2 their modelling language. To this aim, the modelling language metamodel
is required to sub-class the abstract classes of the CORE metamodel. This is either accomplished
by adding the COREModelElement class as a super-class of an existing class or by introducing
a new sub-class in the language metamodel, which is then associated with existing classes of the
language. To avoid name conflicts between metamodels, all classes in CORE are prefixed with
“CORE”.
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Figure 2.4: General Overview of a Concern in the CORE Metamodel.

2.4.5.1 Concern and Models

Figure 2.4 shows the main concepts of the CORE metamodel. At the centre is the COREConcern,
which groups together COREModels. COREFeatureModel and COREImpactModel are con-
crete models contained in a concern, because they define the variation interface. The COREModel
class may be sub-classed in order to corify a language. The language must provide COREModel-
Elements. The only requirement CORE imposes on model elements is that they provide a partial-
ity (to denote generic, incomplete elements) and visibility (to denote elements that are accessible
to the outside). These are required to be able to define the customization and usage interfaces.

The COREFeatureModel is highlighted in Figure 2.5. It contains all the COREFeatures
that are part of the feature tree of a concern. With the exception of the root feature, all other
features have a concrete COREFeatureRelationshipType (XOR, OR, mandatory, or op-
tional) denoting the relationship to their parents. In the case of OR/XOR, all siblings share the
same relationship type. The requires and excludes associations of COREFeature realize
the cross-tree constraints (requires or excludes).

Figure 2.6 provides an overview of the impact model. The COREImpactModel contains
COREImpactNodes, which represent the main impacts (high-level goals). The COREContri-
bution is the relationship between impact nodes denoting how the incoming impact node con-

1Denoted in grey in the figures to follow.
2The process of sub-classing the CORE metamodel within a language to be able to use it within the CORE ap-

proach.
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Figure 2.7: The Realization Models and their Compositions in the CORE Metamodel.

tributes to the target impact node. Goal models are rarely used in isolation, and in CORE they are
used in combination with feature models. Features that are selected from the feature model have an
impact on the high-level goals. Therefore, the COREFeatureImpactNode is the impact node
representing a COREFeature. A simple impact model has one COREImpactNode node as the
high-level goal, and two or more feature impact nodes contributing to the high-level goal.

2.4.5.2 Feature Realizations and Model Compositions

As described in Section 2.4.3, Figure 2.7 shows that each feature can be realized by models. If a
feature is not realized by any models, it is usually used as a grouping feature, e.g., to group together
alternative features. A feature is realized by one model of each modelling language. However,
there exist feature interactions where the structural or behavioural realizations need to be adapted
if the realizations of two or more features conflict with each other. These conflicts are resolved
by providing realization models that realize more than one feature. During the reuse process (see
Section 2.4.2), when the conflicting features are selected, the conflict resolution model is used
during the composition instead of the individual realization models.

In order to support composition, there exist two COREModelCompositions (see Figure 2.7).
The intra-concern composition—for extending the realization model of the parent feature—is ac-
complished using the COREModelExtension class. Inter-concern composition is done through
the COREReuse. Each model contains its own model composition for a reuse in the form of the
COREModelReuse.

Figure 2.8 highlights the reuse and the feature configurations. Reuses are specified at a concern-
wide level. A COREConfiguration entails the feature selection and re-exposed features (see
Section 2.4.4) for a reuse. In addition, models within the same concern hierarchy, i.e., realiza-
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Figure 2.8: The Reuse part of the CORE Metamodel.

tion models that extend another higher-level realization model of the concern, can refine an exist-
ing reuse (see extendingConfiguration association in Figure 2.8). For example, it might
be that to realize a sub-feature, a feature that was re-exposed earlier needs to be explicitly cho-
sen. Similarly, delaying of decisions across concerns is supported via the extendedReuse and
reusedConfiguration associations, as shown in Figure 2.8. Furthermore, a concern can pro-
vide pre-defined configurations that are contained in the COREFeatureModel. This allows the
concern designer to provide different selections for various scenarios and gives the concern user a
convenient way to make a decision.

Finally, model element compositions must be specified to support the customization inter-
face. COREModelElements that are concretized during reuse and any elements that are refined
within the same concern hierarchy are specified using COREModelElementCompositions,
as shown in Figure 2.9. Depending on the modelling language this can either be provided through
a COREPattern, describing a way to match elements of the source model of the composition, or
defined through a concrete mapping from the source model element to the target model element
(in the model the COREModelComposition is contained in). Figure 2.9 also provides an ex-
ample of a concrete CORELink. Impacts from a reused concern might relate to high-level goals
of the reusing concern. Therefore, impact models provide the COREWeightedLink to bind the
high-level goal of the reused concern with the affected goal of the reusing concern [5, 34].

2.4.5.3 Model Element Cardinalities

Furthermore, COREMappingCardinality provides ways for the concern designer to provide
cardinalities (multiplicities) to model elements within a realization model [17]. The cardinality
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Figure 2.9: The Model Element Compositions part of the CORE Metamodel.

specifies how often the element can be mapped within the same composition. This is especially
important if there are elements that need to be mapped a certain number of times for every mapping
of another element. For example, each observer in the Observer requires that its update method
is mapped as many times as the modify method of the subject.

2.5 Reusable Aspect Models
CORE provides a framework for reuse using the VCU interfaces. As we described in the previous
section, modelling languages can extend the CORE metamodel to use them within the CORE
approach. One such modelling language is Reusable Aspect Models (RAM) [60, 61].

RAM is an aspect-oriented multi-view modelling approach for software design modelling. It
offers detailed design using three modelling notations based on UML class, sequence and state
diagrams [81]. A RAM model supports structural modelling using class diagrams (structural view),
behavioural modelling with sequence diagrams (message view), and protocol modelling with state
diagrams (state views). The structural view and message views describe the object-oriented design
and their behaviour, while the state views describe the operation invocation protocol for class
instances. RAM is a compositional approach using aspect-oriented techniques allowing models
to build on each other, which means that models can be kept at reasonable sizes. This results in
decreased complexity of a single model.

RAM has been corified to provide design models for CORE [4]. Therefore, its metamodel

21



2.5 Reusable Aspect Models

structural view
design model Observer realizes Observer

~ void addObserver(|Observer o)
~ void removeObserver(|Observer o)

 
|Subject

+ void startObserving(|Subject s)
+ void stopObserving()

 
|Observer

|Subject
|Observer

subject
0..1

observers

0..*

Figure 2.10: The Structural View for the Observer Feature of the Observer Concern.

extends the CORE metamodel as advocated by CORE (see Section 2.4.5). For instance, the root
element of RAM—the Aspect—sub-classes the COREModel. Model elements such as Class,
Operation, Attribute, etc. sub-class COREModelElement. Specific mappings are pro-
vided within RAM already, therefore ClassifierMapping, OperationMapping etc. sub-
class COREMapping.

2.5.1 Structural View
The structure of aspects is defined in a structural view which defines all classes together with their
attributes and operations, as well as any associations among classes. The structural view is based on
UML class diagrams, with the additional possibility of marking classes, attributes and operations
as partial by prefixing their name with a vertical bar: ’|’.

Partial model elements are included in the concern’s customization interface, and designate
model elements that are general from the point of view of the current concern, which means that
they must be mapped to application-specific model elements before the concern can be used. Fur-
thermore, concern-partial denotes an element that must be mapped within the same concern by a
model lower in the realization hierarchy.

Similarly, public classes and operations are part of the usage interface. They are the model
elements that another model can use and invoke. Besides the common visibility modifiers (public
(+), private (-) and protected (#)), the concern-private (~) visibility3 restricts access to model
elements within the same concern.

For the Observer concern shown in Section 2.4.1, the structure of the design realization model
of the base feature Observer is shown in Figure 2.10. Figure 2.11 shows the structural extension of
the base design for the Push feature.

3This is similar to the package visibility in OOP.
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Figure 2.11: The Structural View for the Push Feature of the Observer Concern.

message view startObserving(|Subject)
target: |Observer

startObserving(|Subject s)

s: |Subject

addObserver(target)

subject := s

message view stopObserving()
target: |Observer

stopObserving()

s: |Subject

removeObserver(target)

subject := null

Figure 2.12: The Message Views for the Observer Feature of the Observer Concern.

2.5.2 Message View
Message views describe the sequencing of message interchanges that occur between instances of
classes of the model. There must be at least one message view for each public operation defined by
a class in the structural view. Message views extend a subset of UML sequence diagrams [97]. In
contrary to UML, no textual descriptions are possible. Instead, the message views refer to elements
defined in the structural view making it necessary for them to be defined there first [101].

Figure 2.12 shows the behaviour of the design realization model of the base feature Observer.
In contrast to UML sequence diagrams, message views provide means to define behaviour that is
closer to the implementation. This facilitates the generation of code from it. For example, tem-
porary properties can be defined and used, values assigned to properties (see Figure 2.12), and a
try-catch combined fragment operator allows one to catch exceptions. For unsupported program-
ming statements, an execution statement can be added to the message view which allows one to
specify code as a string. This string is directly used when generating code.

To support aspect-oriented composition of behaviour, aspect message views provide an advice
that is woven into the behaviour of operations. Figure 2.13 shows the behaviour that needs to be
woven into methods that modify the subject in order to notify all registered observers. The location
of the behaviour of the affected operation is denoted by the original behaviour (shown as a box
containing a ’*’). I.e., the behaviour is specified relative to this position, which makes it possible
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Figure 2.13: The Aspect Message View for Notifying Observers.

state view |Observer
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stopObserving()

startObserving(|Subject)
|update(|Subject)

Figure 2.14: The State View for the Observer Class of the Base Feature of the Observer Concern.

to add behaviour before, after or around the original behaviour.

2.5.3 State View
State Views are similar to state diagrams and build on protocol models [72], which support compo-
sition and allow a protocol machine to refuse transitions. State Views allow the modeller to specify
the different states an object can be in and a protocol that defines what method calls the object
accepts in each state. State views serve as a mechanism to perform model checking or verification
on whether message views comply with the defined state views. The modelled message views must
conform to this protocol. For each class specified in the structural view that defines operations a
state view has to be provided. One transition for each operation has to be at least contained in the
state view.

Figure 2.14 shows the state view for the Observer class, which specifies that stopObserv-
ing()may only be called if startObserving(|Subject)was called prior. As is done with
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Figure 2.15: The Structural View for the Observer Feature of the Observer Concern with Mapping
Cardinalities.

message views, state views reference operations from the structural view in their transitions. In
addition, guards can be specified to define conditions for triggering a transition. Because protocol
models support composition, several state machines can be specified for the same class. As a result,
each state machine can be kept concise, and reasoning can be applied to each model locally. At the
end, all state machines are composed together using parallel composition [72].

2.5.4 Mapping Cardinalities
As briefly outlined in Section 2.4.5, the CORE metamodel provides a COREMappingCardinal-
ity for all COREModelElements. In general, CORE allows the modeller to create multiple
mappings for the same source element. For example, a user of the Observer concern might have a
subject with multiple operations modifying it or needs several observers to handle update notifica-
tions in various places. The designer of a concern is the domain expert and knows how the model is
intended to be extended or customized. By default, a model element has a cardinality of {0..1},
a partial model element has a cardinality of {1}.

The current design of the Observer as shown in Figure 2.10 does not support multiple kinds of
observers. To allow multiple observers, the designer of Observer can adjust the structural design by
introducing a super-class for observers that contains common structure and behaviour. Figure 2.15
shows the design of the base feature of Observer with mapping cardinalities. It is meant to be
used for one subject which may be observed by one or more observers. The partial sub-class
|Observer therefore has a cardinality of {1..*}.

Similarly, for the Push design realization model (see Figure 2.11), the designer wants to allow
the ability to have multiple operations that modify the subject and an update method for each
of those. The designer therefore defines a cardinality of {m=1..*} for operation modify of
Subject and references this cardinality for operation Observer.update: {m}.
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Figure 2.16: The Composed Model of the Observer Concern including Mapping Cardinalities.

2.5.5 Composition
As explained in Section 2.4.3, when a user selects features for reuse, the realizing models of the se-
lected features (and their ancestors) are composed (woven) together. For example, if a user chooses
the feature Push of the Observer concern (see Figure 2.2), automatically the parent feature Ob-
server is selected as well. Since the design model of Push extends the design model of Observer,
they are woven together. For the structural view, the classes that are mapped are merged together,
unmapped classes are copied into the resulting structural view.

The composed structural view of Observer<Push> is shown in Figure 2.16. The classes also
show the mapping cardinalities as outlined in the previous section. Message and state views are
only copied when reusing a concern, and only woven into the final application to deal with com-
plex dependencies (i.e., the diamond problem) [97]. For example, Observer might be reused in a
Stock application in order for a window to get notified once the stock price changes. The modeller
would map |modify to setPrice of the Stock class. Because |modify is affected by the
notification aspect message view (see Figure 2.13), its behaviour is woven in at the matched join
point defined by the pointcut and location of the original behaviour box. As a result, the behaviour
to notify observers is added at the end of the behaviour of the setPrice.

2.6 TouchCORE Tool
In general, MDE approaches rely heavily on tool support. Tool support is even more important
in the context of CORE, in particular for the concern user. The tool needs to guide the user for
selecting variations (making valid selections) and evaluating impacts (allowing the user to do trade-
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off analysis between different selections). In addition, the tool needs to hide the complexity of the
composition of models and provide validation to ensure proper customization and usage.

There exist tools for feature modelling (such as FeatureIDE4) and UML modelling (such as
Papyrus5). Some tools combine feature models with other artefacts. For example, Clafer6 com-
bines feature models with class models [18]. Clafer is targeted at the early stages of software
development, i.e., domain models are mainly used, and it provides reasoning support. The Touch-
CORE tool implements the principles of CORE and uses design models as defined in RAM. The
contributions presented in this thesis are implemented within the TouchCORE tool.

TouchCORE7 [1] is a multi-touch enabled, concern-oriented software design modelling tool
that supports feature and impact models, as well as class, sequence and state diagrams. The Touch-
CORE tool was developed primarily to assist the concern designer when creating a concern with its
three interfaces and the underlying design models. It also assists the concern user when reusing a
concern by ensuring proper customization and usage. Finally, it hides the complexity of the aspect-
oriented model composition and can execute the composition algorithms to visualize the composed
design models.

The foundation of the backend of TouchCORE are the metamodels of CORE and RAM that
define the abstract syntax for CORE and RAM models. The metamodels are defined using the
Eclipse Modeling Framework (EMF). EMF allows the definition of a structured data model and
generate the required Java code from it. EMF provides facilities to serialize models in XMI (XML
Metadata Interchange). Further technologies from the Eclipse Modeling Project8 are used, such as
the Object Constraint Language (OCL) to define constraints for the metamodels.

4https://featureide.github.io
5https://www.eclipse.org/papyrus/
6https://www.clafer.org
7http://touchcore.cs.mcgill.ca
8https://www.eclipse.org/modeling/
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Concernification: Raising the
Abstraction Level of Frameworks
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3
Concernification Overview

Concernification [102] is the process of creating a concern interface for an existing reusable arte-
fact, such as a framework, that can be readily reused at the implementation level. It provides a way
to bridge the gap between the design at the modelling level and the implementation level. Con-
cernification makes it possible to lift existing reusable code artefacts up to the modelling level and
exploit the benefits provided by the higher level of abstraction.

This chapter begins by motivating the need for concernification based on difficulties in reuse
at the implementation and modelling level. Section 3.2 then introduces a general overview of
concernification. It is followed by an overview of the benefits (Section 3.3) a concern interface
provides, as well as the steps that are required to concernify an existing reusable code artefact
(Section 3.4). Section 3.5 shows a concern interface based on the example of a reusable framework
called Minueto. Finally, Section 3.6 shows how a concern interface can be reused and presents the
size reduction of the API for different feature selections on the Minueto concern.

3.1 Motivation
Methodical reuse of software artefacts is considered key to software engineering [65, 70]. Instead
of creating all functionality from scratch, common and recurring functionality is reused. However,
at the modelling level reuse is not very common [123]. Models are often created from scratch
or created by copy-and-pasting existing model fragments. This is due to the fact that there are
basically no reusable models available, and because modelling languages and modelling tools do
not have good support for reuse. Finally, creating reusable models is difficult, because models are
defined at a higher level of abstraction, and typically, reuse is done in a bottom-up way by reusing
specific artefacts depending on implementation choices. MDE advocates a top-down approach,
where models are continuously refined with more detail, to eventually be able to generate code.

At the implementation level, common and recurring functionality is packaged into frameworks
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or libraries1 with the purpose of making it reusable. They are usually well maintained, contin-
uously improved, and come with textual documentation, different forms of code examples, and
other artefacts. Many are publicly available, available as open source and have large communities.
In addition, companies are interested in reusing existing software artefacts in order to amortize
development costs by increasing quality and productivity [74]. However, reuse at the implemen-
tation level has problems as well. The code of a framework usually comes as one monolithic
block. Even if a developer only wants to use a small feature set of a framework, he is neverthe-
less confronted with the complete API. Furthermore, developers need to find out and understand
how to adapt the reusable entities for their own needs, and then how to use the usage interface
(API) correctly. Research has identified many obstacles that developers face when learning and
using APIs [33, 78, 91, 92, 120], such as ambiguous, incomplete or absent documentation and how
to correctly use an API for a task. A study on programmer questions [48] revealed as one issue
“De-localized concerns”: “An object-oriented design [...] often consists of a number of classes and
interfaces, and the source code for a feature or concern may be scattered in multiple syntactic
constructs. How to modularize such concerns is an interesting research topic.”

In the following sections we describe the idea and benefits of Concernification that proposes
to modularize the API of a framework according to features and to raise the level of abstraction of
the API to the modelling level to benefit from the higher level of abstraction.

3.2 General Idea
In order to overcome the problems and limitations described in Section 3.1 and to bridge the
implementation and modelling levels, we raise the level of abstraction of frameworks by lifting
their APIs to the modelling level. This process is called concernification and produces as a result a
concern interface for an existing code artefact [102], i.e., the existing code at the implementation
level is reused and made available at the modelling level. In addition, the higher-level abstraction of
the interface can be exploited to formalize information of a framework that is otherwise informally
described (such as textual documentation). In particular, building on the VCU interfaces provided
by CORE allows the concern interface to expose the user-relevant features and their impacts on
non-functional goals and qualities in a variation interface, describe how to adapt the framework to
the reuse context with a customization interface, and modularize the framework’s functional API
according to the user-relevant features with a usage interface. These benefits are described in more
detail in the following section.

Therefore, concernification makes the framework available at the modelling level and allows it
to be (re)used in the context of MDE by a modeller. However, the benefits are also available at the

1In the remainder of this thesis, the term framework will be used to refer to any reusable code artefact/library.
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implementation level to the programmer. In both cases, the concern interface clearly documents
the framework, which can help a user understand the framework better and help avoid mistakes.

3.3 Benefits
Framework developers generally provide different forms of information or documentation that de-
scribe what the framework provides and how to use it. Common forms are textual documentation,
tutorials, API reference, How Tos, and executable examples. However, this information is often
informal, scattered, and incomplete, making it difficult for the user to gain a clear understanding of
the framework. The proposed concern-oriented model interface for frameworks formalizes the in-
formation and provides it in one place. The advantages are described in the following subsections.

3.3.1 Documents and Organizes Features
The variation interface of a concern provides a high-level, formal, organized view of the user-
relevant features that a framework provides. As described in Section 2.4, the variation interface
of a concern declares the distinctive user-visible aspects and characteristics of the software that a
concern modularizes and encapsulates using a feature model. In our case, each feature encapsulates
some specific use of the framework from the user’s perspective. Successful concernification of a
framework therefore requires the identification of all user-perceived features of a framework and
their relationships (parent-child and cross-tree constraints).

3.3.2 Provides Impacts
The variation interface of a concern also provides guidance to the user on how different alternatives
that the framework offers impact the non-functional properties and qualities of the system that is
being built. Impacts are expressed using impact models, a variant of goal models [54]. An impact
model contains all high-level goals and qualities that experienced framework developers identified
as relevant to consider. By specifying links with relative weights, the framework developer can
express how each feature affects high-level goals and qualities. When reusing a framework, tool
supported impact model evaluation allows the user to perform trade-off analysis between different
feature selections [5].

3.3.3 Tailors the API to the User’s Needs
The public classes and methods of a framework constitute the usage interface (API). Once a feature
selection has been made by the concern user, only the subset of the framework API corresponding
to the user’s needs is exposed to the user, thus reducing the API complexity and cognitive load on
the user to a minimum.
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3.3.4 Provides Usage Protocols
The usage interface of a concern expresses the usage protocol of the different classes in the API
formally. We use protocol models, which are similar to state diagrams, but support composition and
allow a protocol machine to refuse transitions [2]. Specifying a usage protocol for a framework not
only serves as an additional form of documentation, but can be exploited by a modelling tool or
development IDE to ensure that the API of the framework is used correctly, i.e., that the operations
provided by the framework are invoked in the correct order. This helps avoid user mistakes that are
not detectable with static code analysis.

3.3.5 Guarantees Correct Reuse
The customization interface of a concern can be used to force the user to correctly adapt the chosen
functionality to the reuse context. For example, choosing a certain feature might require a specific
class to be extended or an interface implemented. To enforce this, a partial class and/or operation
is added to the design model realizing the feature, which forces the user to provide a mapping from
the partial element to some model elements in his application model.

3.3.6 Provides Glue Code
Finally, repetitive “glue code” that is required to use the API of a framework within an applica-
tion can be provided in the concern of the framework itself. This “glue code” entails pre-defined
structure and behaviour, and is composed with the application’s structure and behaviour before
executable code is generated. This lowers the amount of work required to reuse a framework and
reduces again the possibility for making mistakes. Therefore, the user can focus more on the logic
of the application under development.

3.4 Concernification Steps
Naturally, no existing framework provides a concern interface along with its other documentation.
Ideally, such a concern interface would be created and maintained during the development of the
framework. There exist a large number of reusable frameworks that are readily available for others
to be reused. In order for an existing framework to be concernified, the following steps need to be
performed for the different interfaces.

1. Variation Interface:

(a) Determine the user-relevant features that a framework offers, i.e., the distinct frame-
work features that a user can make use of.
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(b) Determine the inherent dependencies among the framework features, and create a fea-
ture model that documents the dependencies. Successful concernification of a frame-
work requires the identification of all user-perceived features of a framework and their
relationships: mandatory or optional, XOR or OR, and cross-tree constraints (requires
or excludes).

(c) Determine the high-level goals the framework might impact and create impact models
for each goal.

2. Customization and Usage Interface:

(a) Determine which elements, i.e., public classes and methods, of the framework’s API
belong to which feature.

(b) For each feature, create a design realization model that groups all API elements asso-
ciated with the feature. As in CORE design models can extend other design models
by adding additional classes and operations, API elements shared by multiple features
should be put into shared parent design models.

(c) Determine for each element in the API whether or not it is supposed to be in the cus-
tomization and/or usage interface.

(d) Determine and specify the usage protocols for the operations of each class in the design
model.

(e) Identify “glue code” required to use features and add structure and behaviour to the
design realization model. Add affected classes and operations to the customization in-
terface.

In general, performing concernification on an existing framework involves considerable effort.
However, we argue that this high up-front effort makes sense, if the framework is reused a lot.
Additionally, frameworks are typically long-lived. More information, such as new impacts, and
additional features can be added over time. Here, collaborative, open source user communities can
be exploited for this.

In the following chapters of thesis, we focus on steps 1a and 1b for the variation interface, and
steps 2a, 2b and 2c for the customization and usage interface. The remaining steps are out of the
scope of this thesis.

3.5 Concernification by Example
To illustrate concernification, we manually concernified the API of a small framework called Min-
ueto [27]. Minueto is written in Java and touts itself as a game SDK. It provides an abstraction
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layer on top of Java 2D to simplify the creation of 2D multi-platform games by taking care of the
difficult technical parts of game programming related to graphics and input handling, thus allow-
ing the users to focus more on the game logic. The framework provides different window modes,
shapes, hardware graphics acceleration and transparency, and integrates event handling with the
render loop. Minueto is shipped with several documentation artefacts:

• A How To section on the Minueto website [73] provides a quick introduction to the frame-
work, and presents details on how certain tasks can be accomplished;

• Several runnable code examples show how to use specific functionality provided by Min-
ueto;

• The API documentation (based on Javadoc);

• A list of Frequently Asked Questions (FAQ) that explain common issues encountered by
users.

We created a concern of the Minueto framework by hand with the intention to observe key points
that will allow the automation of this process. Minueto is a small framework that consists of 60
classes and interfaces in total, of which 32 classes and 8 interfaces are public. These 40 classes
and interfaces have a total of 260 public and protected methods and constants (~6 on average per
class).

In order to concernify a framework, in-depth knowledge of the framework is required. We
therefore first invested time to familiarize ourselves with Minueto. The different forms of docu-
mentation outlined above were studied. We experimented with the 30 small runnable examples
provided by Minueto that explain how to use different functionality of the framework. Each ex-
ample mostly showcases one use case (such as drawing a specific shape, handling input, etc.). We
further studied the source code to gain additional knowledge about the framework. Finally, we
created a complete class diagram of the framework to gain an understanding of the big picture.

We then elaborated a feature model based on the examples and the class diagram. However, the
examples do not cover all classes and operations. To be able to integrate the missing elements into
the feature model, additional information, such as their API documentation was considered. We
created a feature model, which evolved from a feature model that resembled the class hierarchy a
lot to one that focused on the user-relevant features only. The feature model was iteratively refined
until we reached the final version (see Figure 3.1) that—from our point of view—reflects the user’s
perspective well.

Since we considered the API during elaboration of the feature model, we assigned the API
elements (classes and operations) to their corresponding features during this process. Some oper-
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Figure 3.1: Hand-Made Minueto Feature Model

ations were moved out of their class as they belong to a different feature than the one introducing
the class. Furthermore, we took note of any usage protocol being mentioned in the documentation
and repetitive code that is always or often required and indicates potential glue code.

In the following sub-sections we illustrate the concern interface for Minueto based on this
manual process according to the benefits described in Section 3.3.

3.5.1 Variation Interface of Minueto
This subsection describes in detail the variation interface of Minueto. We begin by describing the
feature model which documents and organizes the features. We then discuss the impact model
which describes how the features impact high-level goals.

3.5.1.1 Minueto Feature Model

Figure 3.1 shows the final feature model that we determined. The features with a grey background
are solely for structuring purposes. They do not have a design model that realizes them, and hence
do not contain any classes or methods of the API.

The functionality of Minueto is divided into three clusters. The mandatory feature Visual pro-
vides everything related to graphical visualization. It is divided into the mandatory feature Surface
for different window modes, the mandatory feature GraphicalElement for different elements that
can be drawn, and the optional features Acceleration (hardware acceleration and support for trans-
parency) and DisplaySize (to retrieve the size of the display at runtime).

The second cluster is the optional feature Interactive, which provides the event queue and dif-
ferent kinds of event handlers. Lastly, the feature group Utilities provides stopwatch functionality
for timing purposes, and a utility class to determine at runtime which operating system the appli-
cation is executed on.

In total there are 26 features of which 4 are mandatory2. Two of them require at least one of
their children to be selected as well, because they have an OR-relationship to their children. This

2The root feature is implicitly mandatory and is always selected.
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Figure 3.2: Minueto Impact Model

means the minimum number of features that can be selected is 6 features (e.g., Minueto, Visual,
Surface, Windowed, GraphicalElement, Text). Note that there is no single correct feature model for
a framework. The feature model shown in Figure 3.1 is one possible feature model for Minueto.
Other feature models—even models with the exact same features and just structural differences—
would be valid as well, as long as the complete Minueto API is modularized correctly. For example,
DisplaySize and Acceleration (with its child Transparency) could also be grouped under Utilities,
even though they are related to visualization. At the same time, one could argue that Surface (or
Visual) should provide all means for different window sizes (DisplaySize). This depends on the
structuring and granularity one wants to attain.

3.5.1.2 Impact Model

Based on the documentation provided with Minueto, we extracted some high-level goals. Fig-
ure 3.2 shows the non-exhaustive goals we determined. For example, it states that from a perfor-
mance point of view, the best set of features to use is to select Fullscreen and Acceleration, but
not to select Transparency and SwingIntegration. The latter features contribute negatively, because
they reduce the performance due to increased resource usage. Fullscreen, however, requires ad-
min privileges in order to create an application spanning the full screen. The individual weights
contributing to the high-level goals were determined based on how they affect the high-level goal
compared to other features contributing to the goal. Unfortunately, it is currently not possible to
specify contextual information in the impact models used in CORE.

Choosing Transparency and Acceleration increases the hardware demands on the graphic card,
and hence is the worst possible selection if one wants to keep the system requirements low. This
means that any other feature can be selected but those two in order to achieve the best possible
result for Decrease System Requirements.

If at any point in time more knowledge is acquired about how these or other features affect any
of the goals, or if new goals are discovered or become relevant, the impact model can be updated
to reflect that.
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structural view
design model Minueto.Visual realizes Visual extends Minueto

+ MinuetoColor(int red, int green, int blue)
…
+ MinuetoColor darken(double factor)
+ int getBlue()
…

+ MinuetoColor RED
+ MinuetoColor GREEN
…
+ MinuetoColor WHITE

<<impl>>
MinuetoColor

+ void clear()
+ void clear(MinuetoColor color)
+ int getWidth()
+ int getHeight()
+ void setPixel(int x, int y, MinuetoColor color)
...

<<impl interface>>
MinuetoDrawingSurface

Figure 3.3: The Interface of the Feature Visual (sub-feature of Minueto)

3.5.2 Usage Interface of Minueto
This section describes in detail the usage interface of Minueto. We first discuss how the API is
modularized across the features. We then discuss the usage protocol of different classes in the API.

3.5.2.1 Minueto API

The complete source of Minueto consists of 2443 lines of code. In total the Minueto API is com-
prised of 32 public classes (of which 0 are abstract), 8 public interfaces, 153 public methods, 18
protected methods, and 89 attributes/constants that are public. Each of these needs to be assigned
to its corresponding feature. A class or method belongs to a feature when the behaviour offered
by the class or method encodes functionality relevant for the feature. For example, creating a win-
dowed game requires the user to instantiate the MinuetoFrame class. Furthermore, the user
might want to set the window’s position. Therefore, the Windowed feature needs to include the
relevant classes and methods. If the Windowed feature is not selected, this means that the user does
not see corresponding classes and methods and therefore does not need to think about them.

Following the Minueto feature model given in Figure 3.1, at the top is the Minueto feature.
From the API’s perspective this root feature is only grouping the sub-features and does not intro-
duce any elements from the API. The feature Visual is responsible for providing general elements
for visualization. Its realization model is shown in Figure 3.3. It introduces the main interface
MinuetoDrawingSurface along with most of its methods and the MinuetoColor class
with its methods and colour constants.

The realization model of the feature Surface extends the realization model of Visual (see Fig-
ure 3.4). It introduces the interface MinuetoWindow (sub-interface of MinuetoDrawing-
Surface) along with its general methods. For example, to make the window visible and close it,
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structural view
design model Minueto.Surface realizes Surface extends Visual

 

<<impl interface>>
MinuetoDrawingSurface

+ void close()
+ void setVisible(boolean value)
+ boolean isClosed()
+ boolean isVisible()
+ void render()
…

<<impl interface>>
MinuetoWindow

Figure 3.4: The Interface of the Feature Surface (sub-feature of Visual)

structural view
design model Minueto.Windowed realizes Windowed extends Surface

 

<<impl interface>>
MinuetoWindow + MinuetoFrame(int width, int height, boolean border)

+ exitOnClose(boolean value)
+ setWindowPosition(int x, int y)
…

 

<<impl>>
MinuetoFrame

Figure 3.5: The Interface of the Feature Windowed (sub-feature of Surface)

render the window, inquire on its visible or closed status, etc.
The leaf feature Windowed as one of the sub-features of Surface provides a concrete Minueto-

Window implementation for windowed applications. Its realization model (see Figure 3.5) pro-
vides the MinuetoFrame class along with specific methods for windows, such as setting and
getting the window’s position, setting whether to automatically exit the application when the close
button is pressed, etc.

Similarly, the GraphicalElement feature introduces the MinuetoImage class along with its
transformation methods (i.e., scale, crop, rotate). In addition, the method drawImage(-
MinuetoImage, int, int) from MinuetoDrawingSurface is placed in the Graphi-
calElement feature as it requires the MinuetoImage class, which is introduced here. The sub-
features of GraphicalElement introduce each a specific sub-class of MinuetoImage to draw
specific graphical elements. One notable exception is the feature Line, which solely introduces
the method drawLine(MinuetoColor, int, int, int, int) from the Minueto-
DrawingSurface interface. As it can be considered a graphical element as well—independent
of how it is actually implemented—it is grouped as a sub-feature of GraphicalElement.
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+ int getDisplayHeight()
+ int getDisplayWidth()
+ boolean isLinux()
+ boolean isMac()
+ boolean isWindows()

<<impl>>
MinuetoTool

{
{

design model Minueto.DisplaySize 
realizes DisplaySize 

extends Visual

design model Minueto.Platform 
realizes Platform 
extends Minueto

Figure 3.6: The Interface of the Class MinuetoTool and the Relation of its Methods to Features

structural view
design model Minueto.Keyboard realizes Keyboard extends Interactive

+ void handleKeyPress(int arg0)
+ void handleKeyRelease(int arg0)
+ void handleKeyType(char arg0)

 

<<impl interface>>
MinuetoKeyboardHandler

+ void registerKeyboardHandler(MinuetoKeyboardHandler arg0, MinuetoEventQueue arg1)
+ void unregisterKeyboardHandler(MinuetoKeyboardHandler arg0, MinuetoEventQueue arg1)

<<impl interface>>
MinuetoWindow

+ int KEY_A
+ int KEY_B
...

<<impl>>
MinuetoKeyboard

Figure 3.7: The Interface of the Feature Keyboard (sub-feature of Interactive)

The class MinuetoTool showcases a class whose static helper methods belong to different
user features as well. Figure 3.6 shows the class with all its methods. The first two methods relate
to retrieving the size of the display and are assigned to the feature DisplaySize. The remaining three
methods allow a developer to find out which platform the application is run on. These are assigned
to the feature Platform. In the same way, the methods of the class MinuetoOptions are split
between the features Transparency and Acceleration.

The feature Stopwatch on the other hand contains one class with all its methods. The class
MinuetoStopwatch provides timing functionality, for example, to measure the frame rate. Sim-
ilarly, the feature Interactive provides the overall functionality required to handle events. It contains
the MinuetoEventQueue class with its corresponding methods to determine whether there is
an event in the queue and to get the next one. Typically, the code to handle events with the event
queue is added to the render loop of the application.

The sub-features of Interactive provide the specific handlers and any corresponding classes
and methods that are required. For example, Figure 3.7 shows the realization model of the fea-
ture Keyboard. It contains the interface MinuetoKeyboardHandler that needs to be imple-
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state view  MinuetoWindow

setVisible(boolean)

clear(…)close()

draw(…)drawLine(…)
draw(…)

drawLine(…)render()

Figure 3.8: The Protocol Model of the Feature Surface for the MinuetoWindow Interface

mented, and the methods to register and unregister the MinuetoKeyboardHandler instance
on the window. As such, the register and unregister methods from MinuetoWindow belong to
the feature Keyboard and therefore are located in its realization model. The MinuetoWindow
interface is located in the realization model of the mandatory feature Surface, therefore, they are
always available. When using the Keyboard feature, the register and unregister methods
are made available in addition.

3.5.2.2 Usage Protocol

Frameworks often require certain methods to be called and sometimes they need to be called in a
certain order. This is usually described in textual documentation and the user is required to find and
remember it when writing code. In CORE, the usage protocol of a framework can be formalized
using protocol models [2], which are part of the usage interface. The user can view the protocol
and understand in what order calls need to be made and how calls affect the state the class is in.
Furthermore, the usage protocol can be used by model checkers or code analyzers to ensure that
the API is used correctly by the user.

For example, the usage protocol for the MinuetoWindow interface provided in the realization
model of the feature Surface is shown in Figure 3.8. It shows the required order in which the
methods of the interface are supposed to be invoked as outlined by the example in Listing 3.1.
For instance, it ensures that render() is only called after drawing something. Furthermore, the
clear(...) method is optional and can only be called before drawing.

Usage protocols can also help with avoiding exceptions during runtime. Minueto, for exam-
ple, defines several methods that throw exceptions during runtime if an instance is not in the
required state or invalid values have been passed as parameters. For instance, MinuetoFrame
and MinuetoFullscreen can throw a MinuetoInvalidStateException if a method
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state view  MinuetoEventQueue

used
hasNext()

handle()

MinuetoEventQueue()
initialized

hasNext()

Figure 3.9: The Protocol Model of the Feature Interactive for the MinuetoEventQueue Class

requiring the window to be visible (not hidden or closed) is called when the window is not vis-
ible. This is already covered with the given usage protocol. However, some methods throw a
MinuetoOutOfBoundsException depending on the actual parameters. For example, the
method setWindowPosition(int, int) of MinuetoFrame throws this exception if ei-
ther of the two parameters is negative3. The protocol model can incorporate this by specifying a
guard on the transition for setWindowPosition to ensure that x >= 0 && y >= 0.

In addition, based on the usage protocol it is also possible to verify that a class is actually
being used and not just instantiated. For example, it would be incorrect to create an instance of
MinuetoEventQueue and never call any of its methods. Figure 3.9 shows the protocol model of
the MinuetoEventQueue class where this is reflected. However, our feature model of Minueto
(see Figure 3.1) requires that at least one of the handlers (sub-features of Interactive) is used if the
user chooses the Interactive feature. This means that it is not enough to just satisfy the protocol of
MinuetoEventQueue without registering at least one handler. Therefore, the protocol models
of the handlers need to specify as a requirement to register the respective handler during the setup
of the window. In fact, among the 30 runnable examples that are shipped with Minueto, two of
the examples4 violate this requirement by instantiating and using the MinuetoEventQueue (as
shown in Listing 3.1) without registering any handler. While the examples still run, the API is
used incorrectly by instantiating an event queue but not doing anything interactive. I.e., the loop
to handle events, as shown in Listing 3.1 above, never executes the body of the loop. If there had
been a protocol model for Minueto, a model checker would have been able to detect this error.

3This is not mentioned in the official API reference but determined based on the documentation comments within
the source code.

4HelloWorld and TextDemo.
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structural view
design model Minueto.Keyboard realizes Keyboard extends Interactive

+ void handleKeyPress(int arg0)
+ void handleKeyRelease(int arg0)
+ void handleKeyType(char arg0)

 

<<impl interface>>
MinuetoKeyboardHandler

+ void registerKeyboardHandler(MinuetoKeyboardHandler arg0, MinuetoEventQueue arg1)
+ void unregisterKeyboardHandler(MinuetoKeyboardHandler arg0, MinuetoEventQueue arg1)

<<impl interface>>
MinuetoWindow

+ int KEY_A
+ int KEY_B
...

<<impl>>
MinuetoKeyboard

+ void handleKeyPress(int arg0)
+ void handleKeyRelease(int arg0)
+ void handleKeyType(char arg0)

|KeyboardHandler

|KeyboardHandler

Figure 3.10: The Interface of the Feature Keyboard with the Partial KeyboardHandler Class

3.5.3 Customization Interface of Minueto
This section describes in detail the customization interface of Minueto. We first discuss how
mandatory customization steps by the user can be enforced. We then describe how glue code is
integrated into the concern interface.

3.5.3.1 Guaranteeing Correct Reuse

In addition to assigning elements of the API to a feature, realization models can contain additional
information. Frameworks sometimes require a user to implement an interface, sub-class an abstract
class or customize a method. To ensure that the user knows about this and correctly reuses the
framework, CORE allows a developer to mark elements as partial (incomplete). This leads to the
element being listed within the customization interface of the concern and enforces that the user
provides a customization for the partial element.

For example, the realization model of the feature Keyboard (see Figure 3.7) contains the
MinuetoKeyboardHandler interface. To react to keyboard inputs, the user building an ap-
plication must implement this interface. To ensure that this is done, a class—which implements
the MinuetoKeyboardHandler interface—is added to the realization model and marked as
partial.

Figure 3.10 shows the realization model with the |KeyboardHandler class added. The
top-right corner shows the customization interface of this realization model. One added benefit of
this is that when implementing an interface, all its methods need to be implemented. It happens
often that only a subset of all interface methods is actually used and therefore the unused ones are
implemented with an empty body. At the implementation level, the designer can provide default
implementations if it is predicted that this situation might occur frequently. Similarly, this situation
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can be covered in the concern interface by allowing the realization model to provide default (empty)
implementations of the interface methods. However, this means that the user might overlook that
these methods should be implemented. To enforce the user to provide an implementation, the
methods can be marked as partial.

3.5.3.2 Glue Code

Using frameworks often requires the user to write code that “glues” the application code with
the framework. Often this code is repetitive because it is the same or very similar for all users
and contains no or only some application-specific details. To avoid this, concernification makes it
possible to integrate glue code within the realization models themselves, therefore making the glue
code be part of the concern interface of the framework. This pre-defined structure and behaviour
is then composed together with the application-specific structure and behaviour, relieving the user
of this repetitive task. The user can benefit from this and only needs to focus on the logic of the
application itself.

Listing 3.1 Main Code to Run an Application with Minueto Including Handling of Events
1 MinuetoWindow window = // create specific window instance
2

3 // Optional: To handle events.
4 MinuetoEventQueue eventQueue = new MinuetoEventQueue();
5

6 window.setVisible(true);
7

8 while (true) {
9 // Optional: Clear the current canvas.

10 window.clear();
11

12 // TODO: Draw something.
13

14 // Optional: Handle events.
15 while (eventQueue.hasNext()) {
16 eventQueue.handle();
17 }
18

19 window.render();
20 }

For example, each application using Minueto needs to have a window. In addition, a game
loop—an infinite loop—needs to be defined to perform all draw operations and to trigger rendering
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structural view
design model Minueto.Surface realizes Surface extends Visual

 

<<impl interface>>
MinuetoDrawingSurface

+ void close()
+ void setVisible(boolean value)
+ boolean isClosed()
+ boolean isVisible()
+ void render()
…

<<impl interface>>
MinuetoWindow

+ |create()
~ void |draw()

|Application
|Application<|draw()>

1    window

Figure 3.11: The Interface of the Feature Surface with Added Glue Code Structure

on the screen. In the case of interactive applications (making use of the Interactive feature), the
event queue is used to handle any input events within the game loop before rendering. This partial
structure and behaviour can be already contained within a realization model in order for the user
not to have to deal with this. The required code to realize this is given in Listing 3.1.

For example, the fact that an application always has a window and a game loop can already
be contained within the realization model of the Surface feature. Figure 3.11 shows the structure
of Surface with an additional |Application class. It represents the main application class re-
sponsible of starting the program and contains a MinuetoWindow, which the user will have
to provide the concrete instance of. In addition, two partial elements are defined. The |draw()
method corresponds to the method taking care of drawing everything on the screen to be provided
by the user. The partial empty constructor is defined in order to integrate the partial behaviour for
the game loop.

Figure 3.12 shows the message view definition of |create() along with the aspect message
view startGameLoop, which after any behaviour defined by the user makes the window visible
and starts the infinite loop where the user-provided drawing method is called, followed by render-
ing everything on screen. The realization model of Interactive can then provide additional partial
structure by providing the event queue and initialize it by advising the partial behaviour of the con-
structor. Furthermore, before rendering everything on screen, the loop to handle all events using
the event queue can be inserted.
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aspect message view startGameLoop

target: |Application
|create()

Pointcut
Advice

|create()

target: |Application

window: MinuetoWindow

render()

 
|draw()

loop [true]
*

*

message view |create() affected by startGameLoop

setVisible(true)

Figure 3.12: The Partial Glue Code Behaviour of the Feature Surface

3.6 Reusing a Concernified Framework
A user can reuse the Minueto concern by following the three-step process as outlined in Sec-
tion 2.4.2. While choosing the features the user desires, the impact models are evaluated, which
allows the user to do trade-off analysis based on the intended high-level qualities for the system.
Once the feature selection is done, the user receives a custom-tailored Minueto API based on the
feature selection. It is a subset of the API containing only those elements that are related to the
selected features. This provides the user with the minimal API for his specific needs, by hiding
access to those elements that the user does not need to be concerned with.

The customization interface then tells the user how to adapt the framework. If any partial struc-
ture and behaviour is provided, as explained in Sections 3.5.3.1 and 3.5.3.2, the user is forced to
provide customizations for partial elements. This ensures that the user provides concrete elements
within the application and relieves the user from having to define repetitive glue code. This is based
on the result of composing all realization models of the selected features. The usage interface con-
sists of the subset of the complete API and allows the user to use the parts of the framework based
on the feature selection. With the help of the usage protocol, it can be ensured that the API is used
correctly.

The minimal selection of features for Minueto consists of the root feature Minueto, Visual, Sur-
face, one of the sub-features of Surface, GraphicalElement, and one of the sub-features of Graph-
icalElement. With those features, it is possible to create an application with a window surface, and
to draw some shape on that surface. Taking the classic hello world example that is commonly used
to introduce someone to a new (programming) language, the selection of sub-features could be, for
example, Windowed and Text. Selecting a non-root feature means that also all its ancestors are se-
lected, therefore, the selection of Windowed and Text would also result in the selection of features
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Table 3.1: Comparison of API Size Based on Feature Selection

Feature Selection5 Classes Interfaces Methods Constants Percentage of
Complete API

Windowed, Text 5 2 56 11 26.2

Fullscreen, Rectangle 4 2 47 6 20.9

Windowed, Fullscreen,
Text, Rectangle,

Keyboard, WindowFocus,
Mouse

10 4 72 89 62

All 32 8 153 89 100

Surface, GraphicalElement, Visual, and Minueto. Table 3.1 shows a comparison of some feature
selections based on the number of different elements and which percentage of the total number of
elements of the complete API is retrieved. While the feature selection of Windowed and Text gives
access to 26.2% of API elements, to accomplish the hello world example only 7 methods and 1
constant are required. This makes it only 5% of the complete API and 20% of the partial API of
the Windowed and Text feature selection. With a finer granularity of features, the API could be
divided further into more sub-features. The reduced API significantly reduces the cognitive effort
for a newcomer to write a hello world application.

3.7 Summary
This chapter proposed concernification of frameworks, a process to produce a concern interface for
an existing framework that is reusable at the implementation level. The higher level of abstraction
is exploited to formalize information of the framework that is otherwise informally described.
We build on the three interfaces for reuse provided by CORE. The variation interface documents
the user-perceivable features and organizes them in a feature model. This provides the user with
an organized, high-level overview of the functionality a framework provides. The functionalities
are grouped according to features that are based on typical usage scenarios, and the relationships
between the features are clearly expressed. The second part of the variation interface provides
impacts that explain to the user how the different features of the framework impact non-functional
properties. The usage interface constitutes the public classes and methods of the API. Each feature
is linked to the part of the API of the framework required to use that feature. Secondly, the usage

5Ancestors of those features were omitted for brevity as they will be selected automatically.
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interface also expresses the usage protocol of the API to document how to use the part of the
API corresponding to each feature. Based on the selected features by the user the subset of the
API relevant to only those features can be presented to the user. Furthermore, the customization
interface allows the designer to include within the concern interface those classes and methods that
need to be implemented by the user, thereby enforcing that this is done correctly.

The benefits of concernification are two-fold. First, the existing reusable code artefact can now
be reused at the modelling level. This allows modellers to access the large amount of function-
ality offered by existing reusable frameworks. Second, the concern interface clearly documents
the framework which supports the user at the modelling level. In addition, it could also support
users reusing the framework at the implementation level in understanding what functionality the
framework provides, and which API relates to specific functionality.

Open source communities, such as GitHub, are popular and allow users to report issues, suggest
new features and contribute additional code. Such a collaborative community could also be used to
allow users to suggest changes to the concern interface of a framework. For example, a user could
suggest new or different impacts for high-level goals based on experience with the framework.

In the remainder of this thesis, we focus on the steps to determine the user-relevant features
and organize them in a feature model (steps 1a and 1b for the variation interface, see Section 3.4),
and to determine the corresponding API elements for each of the features and the elements that
need to be part of the customization interface (steps 2a, 2b, and 2c for the usage and customization
interface).

To illustrate concern interfaces, we manually concernified an existing framework called Min-
ueto in this chapter. We first familiarized ourselves with the framework making use of the various
information made available by the developers. We then followed the steps outlined in Section 3.4
to create the three interfaces. This was a non-trivial and time-consuming process and required to
continuously refine the concern interface. In order to help a developer of a framework in creating a
concern interface, we intend to automate the steps mentioned above, with the aim of generating an
initial concern interface that the developer can use and refine. In [102] we proposed to exploit key
information available from a reusable framework and its API for automating this process. Before
moving on to describe the automated concernification, we need to validate the manually created
feature model of Minueto to ensure it accurately describes the user-perceivable features and their
relationships. Furthermore, this will validate whether our intuitive use of key information we man-
ually extracted from the Minueto code to build the concern interface was sound. In the following
chapter, we hence describe the study we conducted with the developers of Minueto to validate our
feature model.
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4
Validating the Minueto Feature Model

Chapter 3 introduced the idea and process of Concernification. We used the reusable framework
Minueto to showcase concernification. As a result, we derived a feature model with the correspond-
ing API for each feature. This concern interface is based on our understanding of Minueto after
familiarizing ourselves with the framework. In order to validate the Minueto feature model, we
conducted a user study with the two developers of Minueto. The participants were asked to create
their own feature models of Minueto, and individual interviews were conducted to discuss theirs
and our feature model.

This chapter begins with an overview of the study and its goals. Section 4.2 then introduces the
participants of the study and outlines their level of involvement in the framework’s development.
It is followed by a description of the study set-up in Section 4.3. The gathered data is analyzed in
Section 4.4. First, by discussing the information the participants used to create their own feature
models of Minueto. Second, the different versions of feature models are presented and the reason-
ing behind the participants discussed. The evolution of feature models is shown, and the feature
models of the different actors compared. Following the analysis, we discuss interesting insight we
gained from the interviews in Section 4.5. Section 4.6 discusses the limitations of the study in
Section 4.6 and this chapter concludes with a summary in Section 4.7.

4.1 Overview
The concern interface of Minueto (discussed in the previous chapter, see Section 3.5) we created is
based on our own knowledge of Minueto. We familiarized ourselves with the framework by reading
all supplied documentation (such as the webpage, How To, FAQ, and API reference), executing the
examples and viewing their source code, and taking a closer look at the framework’s source code.
As a result, we derived a Minueto feature model (see Figure 3.1) with the corresponding API
for each feature. This feature model is based on our understanding of what a feature of Minueto
constitutes and what features can be used in combination.
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However, there exists no unique correct feature model for a given framework for multiple
reasons. First, what should or should not be considered a feature of a framework is not clearly
defined. In particular, it is very often possible to increase the level of detail and decompose a
feature further, adding additional sub-features. Second, even for a fixed set of features, there exist
many equivalent feature models that specify the same set of possible configurations with a different
set of optional, OR, XOR, requires and excludes constraints between the features [25].

We conducted a qualitative study in which we performed semi-structured interviews with the
two main developers of Minueto. The main goal of the study was to validate the feature model of
our concern interface of Minueto. To do this, we asked the study participants to create their own
feature model of Minueto. This allowed us to compare their feature models with ours to confirm
its validity.

In addition, we intended to confirm the key information we proposed in [102] that is avail-
able from a reusable framework and from its API and hence can be used to concernify a frame-
work. The information initially considered were the Object-Oriented hierarchy, usage of the API
in runnable examples, and the package structure of the API. In addition, we also considered so
called cross-references as valuable, i.e., references in method signatures, e.g., in return parameters
and parameter types, that point to other classes.

As creating a concern interface for an existing framework is a time-consuming task, the key
information can be used in automating the process to provide an initial concern interface. The
validated feature model of this study can also be used during the design of this automated con-
cernification process.

4.2 Study Participants
The Minueto framework was mainly developed by Alexandre Denault (D1) as part of his Master’s
thesis in 2005 at the School of Computer Science at McGill University. The framework was mainly
geared for students to make it easier for them when developing games for their course projects.
During its development, Minueto was used in software engineering project courses and further
improved based on the student feedback. The last official release is version 2.0.1, which was
released in early 2010. Since its inception, it has been used extensively by many students, mostly
for the software engineering project course.

The second developer, Michael A. Hawker (D2), contributed some functionality and runnable
examples. Additionally, he has volunteered with and advised high-school students who used Min-
ueto for their projects a few years ago. Furthermore, he added support for arcs to the framework in
20151.

1See the repository on GitHub at https://github.com/Mikeware/minueto.
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For brevity, we refer to the participants by their data-coded alphanumeric identifier (ID). In
summary, D1 is the core developer and architect of Minueto, whereas D2 can be more seen as a
contributing developer and maintainer, having insight into the framework’s inner workings.

4.3 Study Set-Up
One of the things we were interested in was to understand how a framework developer sees their
own framework in terms of the user-perceived features it provides and how they relate to each
other. We therefore first asked the participants to create their own feature model of Minueto inde-
pendently. This ensured that the participants had an unbiased view of their framework’s features. It
also allowed them to re-familiarize themselves with Minueto. Along with the request we provided
a brief explanation of feature models and a small example.

We then conducted semi-structured interviews [104] with each of the participants in which we
asked open-ended questions, such as “How did you come up with the feature model of [frame-
work]?”, which could lead to follow-up questions. Furthermore, we also asked clarification ques-
tions about the feature model the participants provided.

The interview was split into three main parts, as follows:

• Discussion about the participant’s feature model, eliciting:

– What information was used to create it.

– Which parts of the API correspond/belong to which feature.

• Discussion about the runnable examples provided with Minueto.

• Discussion about our feature model.

The complete interview guide with the main questions is provided in Appendix B. The interviews
were scheduled to last an hour and recorded for in-depth offline analysis.

4.4 Data Analysis and Results
The interviews we conducted were transcribed and used as the base for data analysis. In addition,
the notes taken during the interviews were considered. We analyzed the data using a combination
of quantitative and qualitative methods [104]. In the following subsections we first discuss the
information the developers used to create their own feature model. Then, we discuss in detail the
variants of feature models and provide a comparison between them.
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4.4.1 Information used for Feature Model Creation
Only D1 looked at the Minueto website in order to “[...] remember what Minueto does”D1

2.

API and OO hierarchy Both D1 and D2 looked at the API reference in detail, which D2 referred
to as taking a “more analytical approach”: “[I] looked at how the API was kinda laid out [...] it was
already pretty well structured I think, since it’s meant to be approachable for university students
just learning about all these sorts of things.”D2. Considering the API layout means looking at pack-
age structure and OO hierarchy, D2 then went on to break down the framework and categorized its
main functionalities into groups. Each group was then further broken down with specific features
assigned to the group. Some features were broken down based on their OO hierarchy: “once I did
that top level I was like ’you know, there’s a little bit more depth here’, and that’s when I [...]
started thinking about the image hierarchy, of all the different types of MinuetoImage and all
the different operations and [...] used the API as a guide at that point to drill in and [...] fill out
some of those things to a bit more detail.”D2. It became apparent during the interview that D1 did
not use the API to come up with the initial feature model, as he explained D1 tried “to separate the
feature model from the class diagram”D1. Contrary to that, D2 was trying to map off from the API
while building the initial feature model.

API Usage in Examples D1 looked at some of the provided examples to “[...] just reminisce
about all the different features that were available”D1. As the creator of most of these examples, he
remembered what their purpose was: “I remember the idea behind why I built the tutorial and how
I built them. [...] it was to introduce one [...] aspect of the framework at a time. And so basically,
it’s to teach them one [new thing] in each [tutorial] and then [...] you could almost map it to one
feature of the framework in the sense that, every tutorial is supposed to teach them one new thing
about the framework.”D1. While D2 did not use them to create the feature model, he knows what
their purpose is. With the exception of one example—called FireInTheSky—which shows a full
game using almost all features, “the other ones are a little bit more [...] trying to focus on specific
pieces of the API”D2. However, both developers mentioned that to see which part of the API is used
in which example they would use code analysis tools, e.g., static code analysis, to help with this
task.

Cross-references D1 specifically mentioned to analyze parameters in method signatures during
the interview because “the fact of a certain parameter might be an indication of a certain feature
that’s in there”D1. For example, when asked about the methods to register and unregister handlers
in MinuetoWindow, D1 responded “in the sense we could say[...] the keyboard feature and the

2The quotes of the participants are associated with their identifier for traceability and to distinguish between the
participants.
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Minueto

Keyboard Mouse Window

Handler

RectangleFileText Circle

Window

Figure 4.1: The initial feature model created by D1 (D11)

mouse features are both in that interface”D1.

Summary To summarize, both participants confirmed our theory of using different information
available from a reusable framework and its API. Besides the API, this is the inheritance hierarchy,
the runnable examples and their usage of the API, and the presence of references within parameters
in method signatures. Packages provide a form of grouping classes according to some classifica-
tion. While none of the participants specifically mentioned packages, the API reference shows on
its index page an overview of all packages, and the packages are always visible in the top-left area.
This list allows a developer to browse the classes by package. In addition, the runnable examples
provided with Minueto are also structured in packages similar to the API itself.

4.4.2 Feature Model Variations
As explained in Section 4.1, the understanding of what a feature should be and how to organize
them can differ. Therefore, it is not surprising that the feature models of D1, D2 and our own
feature model were not identical. This subsection analyses and comments on the commonalities
and differences.

4.4.2.1 Feature Models of D1

The initial feature model of D1 (D11) is shown in Figure 4.1. It is based on the two core function-
alities that Minueto was built for: “drawing stuff very fast on the screen, and picking up input”D1.
The Handler feature group provides different input types, whereas the Window feature provides the
different things that can be drawn on the window. D1 struggled with knowing the class diagram
and deriving a feature model for it. As the main person who implemented Minueto and remem-
bering all the details in the implementation, he struggled with deriving a feature model from the
class diagram, even though most of the time “there is a very close mapping and so it was this
challenge of trying to find a way to break down Minueto in a different way which represented more
the features than the class diagram”D1. A frequent discussion point in the interview was centred
around the level of granularity of features. For example, Minueto makes use of double-buffering
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Figure 4.2: The updated feature model of D1 elaborated during the interview (D12a), increasing
the level of granularity

to only draw on the screen once everything is finished drawing on the off-screen. However, this is
always used and is not something that the user can enable or disable. When asked which things in
Minueto could be used or not used, D1 mentioned hardware acceleration. D1 also confirmed that
Line (i.e., the ability to draw a line) is considered a feature, but admitted that “it’s possible that my
model was biased by what I think is pertinent vs. what I think is there”D1. The following comment
further indicated that the feature model was mostly derived from memory: “If I wanted to do a [...]
complete feature list of stuff that I can choose to use, then in that case I would say I would have to
go through the source code and try to find every option that’s in there”D1.

Following the questions regarding the feature model D11 (see Figure 4.1) we asked D1 to go
through the list of examples (see Appendix C) and list which features are used by which example.
The names of some of the examples reminded D1 of features that he missed in his first feature
model. For instance, this led to the addition of the Line feature as something that can be drawn on
the screen. Furthermore, the different types of surfaces (or windows) were explicitly distinguished.
The updated feature model D12a is shown in Figure 4.2. However, when talking about the names
of features that group other features, D1 was wondering whether there would “be a notation to
be able to describe what the relationship is. [...] with class diagrams it’s very straight forward to
describe the relationship. You’re always talking about is-a-parent-of-the-things [...]”D1. Referring
to the feature group for the shapes that can be drawn, and the different kinds of windows, he went
on to say that “[...] here the relationship is things I can draw on the surface and this is types of
surfaces I could use”D1. This is in contrast to the Handler feature which groups different kinds of
handlers. Similarly, the naming of features is a point that was mentioned many times during the
interview, for instance when discussing the two groupings: “[...] it’s this comfort at the same time
of figuring out what the [name of the feature] would be and as I was drawing it, I wasn’t able
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Figure 4.3: The refined updated feature model of D1 elaborated during the interview (D12b)
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Figure 4.4: Evolution of feature models by D1

to find a smart way of saying this ’drawing stuff on screen’, and then I didn’t like the box saying
’things I can draw on the screen’. I found that it was redundant [...]”D1.

When discussing the runnable example ResolutionChangeDemo, D1 explained that this
example shows how to use and change between a window and a fullscreen window. Since this
contradicts the XOR relationship of Surface Types in D12a we asked for clarification from D1:
“Well they are not used at the same time, but they are used in the same program, but they [...]
cannot be used at the same time”D1. This change is reflected in Figure 4.3 which shows the second
feature model D12b elaborated during the interview with D1. The second change relates to the
distinction between different types of surfaces. The windows reflect the canvas on which elements
can be drawn on, whereas a second type of surface are temporary images. A temporary image
allows creating composites and draw them together as well as manipulate them.

Feature Model Evolution Summary The evolution of the feature models of D1 illustrates the
difficulty of defining the granularity of a feature. During the interview we established a common
understanding.

Figure 4.4 shows the evolution of changes between the three variants of feature models pro-
duced by D1. It shows that D12a is a refinement of D11 and D12b is a further refinement of D12a.
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Figure 4.5: The initial feature model created by D2 (D21)

4.4.2.2 Feature Models of D2

The initial feature model of D2 (D21), shown in Figure 4.5, was more detailed. The reason could
be that—as we outlined earlier in Section 4.4.1—D2 used the API reference to deduce the features
and their relationships. Therefore, D2 was looking at all classes and methods provided by the
Minueto API. However, the presence of the feature Sound indicates that this part was added from
memory/knowledge as there are no classes and operations related to sound support in the API
reference. The example FireInTheSky has sound, but it is not provided by Minueto. As D1
explained, it was given as an optional module “[...] because at that time when we built it, the
virtual machine didn’t really do sound very well. So, it was like a ticking time bomb [...]”D1.

Comparing D21 to our feature model (see Figure 3.1) shows that it has some similarities. One
notable difference is the additional details identified by D2 in the feature group Drawing. This
again raised the topic of granularity, whether such things are “useful to call out or not”D2. For
instance, both the Draw and Objects features provide shapes to draw. However, there is a difference
between the two because “of the way the library is constructed [...] everything is extending from
MinuetoImage, so even if you make like a rectangle or a circle, they’re still effectively just
images on the screen. And so I was trying to differentiate the fact that you can have an object that’s
a circle or rectangle that [is] easy to move around vs. using the draw method to [...] paste things
together”D2. MinuetoImage has sub-classes for different shapes as objects, however, it is not an
abstract class and by itself represents an empty image. It has draw methods to draw different shapes
into the image enabling the composition of images. In addition, it has transformation methods to
manipulate an image. However, due to the sub-classing, these methods are available for all the
object shapes. While D2 was explaining that part of the feature model, he noted that he “would
move the draw one back to the objects side, because it’s about [...] what you can put on the
screen”D2.

In terms of possible feature configurations, D2 sees Input as a mandatory feature, the reason
being that he thought about “what you would require to use to make something useful vs. what
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Figure 4.6: The updated feature model of D2 elaborated during the interview (D22)

isn’t”D2. While the examples do not always use handlers, most regular applications (such as games)
created with Minueto usually make use of input handling. When asked whether D2 considers
handling of window and window focus events as a feature, D2 explained that it could be a feature
under Input, but that he is expecting that this is always used because one should know about the
window state. Discussing hardware acceleration which the API allows a user to enable specifically,
D2 responded that it was something one does once to set-up the project but confirmed ”that’s
optional too, so [...] it’s probably worth calling out to have [...] in the helpers [...] something
about [...] the different configuration pieces”D2.

The discussed changes to D21 are shown as D22 in Figure 4.6. Hardware Acceleration and Al-
pha Transparency are explicitly shown as features within the Helpers feature group. Furthermore,
D2 also confirmed that a Minueto application could switch between fullscreen and windowed
mode, but that the Swing integration (named Embedded in D21 and D22) cannot be combined
with any other window type. However, both participants did not know whether the feature model
describes the application at runtime—where only one window can be used at a time—or during
development time. Both assumed the former, and hence, they used an XOR relationship at the
beginning. Upon clarification by the investigator that the feature model describes what is avail-
able to the user of the API at development time, the additional grouping was introduced to allow
usage of both window modes. This was again triggered when discussing the runnable example
ResolutionChangeDemowhich shows switching between a windowed and a fullscreen mode.

Feature Model Evolution Summary The initial feature model of D2 is very detailed and covers
almost the complete API. As such, the changes between D21 and D22 are mainly restructuring of
the groups and their constraints (e.g., in the Display feature group).

Figure 4.7 shows the evolution between the two feature models. The reason of D21 containing
two additional features is the feature group Sound. However, these are not actual features of the
Minueto framework, but rather optional code provided in one example. Disregarding these features,
D22 provides a refinement over the initial feature model D21.
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Figure 4.7: Evolution of feature models by D2

Table 4.1: Feature Model Metrics of D12b and D22

Feature
Model

Features Groups Leafs Mandatory Optional OR-
groups

XOR-
groups

Configurations3

D12b 22 8 14 3 3 4 1 4464

D22 32 10 22 5 1 7 1 3948

Comparison of Feature Models Now that the feature models of both D1 and D2 are established,
we can compare them with each other. We use the final versions D12b and D22. Table 4.1 shows
the metrics of the two feature models. The two feature models have 21 features in common. The
numbers show the higher level of granularity chosen by D2. The higher granularity resulted in the
Helpers feature group and the additional sub-features of Image (see Figure 4.6). The only feature
contained in D12b that is not in D22 is the feature Window for handling window events.

To compare the possible feature configurations, we use the 21 common features between D12b
and D22. The difference in configurations results from the fact that D2 chose input handling to
be mandatory, whereas for D1 it is an optional feature. As we discussed above, D2 based these
constraints on the fact that when one wants to create a game input handling is always used in
order to create something meaningful. However, the examples show usages of Minueto with no
event handling at all. Similarly, D2 marked the group feature (named Colors / Blit Effects) of
the graphical object transformations as mandatory. For D1 it is an optional feature, however, it is
grouped under the feature Temporary Image.

4.4.2.3 Investigator Feature Models

Our first Minueto feature model which we describe in detail in Section 3.5 is referred to as I1 (re-
shown for convenience in Figure 4.8). This feature model was shown to both participants during
their interviews with the intent of gathering feedback on its completeness and its accuracy. Our

3Disregarding differing features, i.e., only based on the common features of the feature models.
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Figure 4.9: The updated feature model I2 based on feedback from the participants

theory was that there is not only one correct feature model but many different possible variations
with varying degrees of granularity.

The corrected feature model I2 is shown in Figure 4.9. Most of the features were agreed on
as correct by both participants. For example, on the fact that WindowFocus is a feature (under
Interactive), D2 mentioned: “I do like the WindowFocus being there as part of the Interactive
thing, [...] that kind of makes sense and I see [...] why they’re all there, because they’re all [...] the
different handlers you can attach to the window”D2.

The biggest structural change relates to the exclusion of SwingIntegration from the other
two window modes, as described earlier. Furthermore, our understanding of hardware acceler-
ation being required when using transparency was incorrect. While the documentation of the
enableAlpha method states that “this will dramaticly slow down the application unless the
JVM uses some kind of acceleration”, it is nevertheless possible to use transparency without ac-
celeration. From the documentation it looks like they should always be used together because in
addition to the above comment it is always used in combination with hardware acceleration in the
examples. However, D1 admitted that he “didn’t want the students to do something that was not
smart”D1.

D1’s main critique about our feature model was the naming of some features: “[...] they are
one words, and then again, I come back to feature models and it’s things you can do and [...] we’re
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describing in one word [...] things you can do”D1. He also rejected the name Drawing as an alter-
native to Visual: “I tell the guys in the team in their documentation [...] that if you’re describing
things with one or two words, then what the person gets out of it is gonna be his interpretation
of what the one or two words mean”D1. Similarly, D2 rejected the feature SwingIntegration—sub-
feature of Interactive—in part because of the duplicated name (with the sub-feature of Surface).
While feature models do allow different features to have the same name, it can be confusing be-
cause it could appear as the same feature appearing twice in a tree. The other reason D2 rejected
this feature was that the documentation does not mention any API element related to handling
Swing events. Upon further investigation, this is due to the relevant classes being excluded within
the Ant build script to generate the API reference (Javadoc) for Minueto. The reason we detected
this as a feature was that we also looked at the source code in addition to the API reference and
examples. In addition, based on what we learned about Minueto during the interviews, we moved
the feature File (to load an image from a file) to be a child under GraphicalElement because it can
be used independently of Image (which provides a blank canvas).

Finally, as a result of the feedback, several feature names were improved to better reflect what
functionality the features provide, i.e., Alpha Transparency (Transparency beforehand), Hardware
Acceleration (Acceleration), Capture Swing Events (SwingIntegration), and Timer (Stopwatch).

Feature Model Evolution Summary Since no features of I1 were rejected by any of the partic-
ipants, and no missing features were detected, there are no feature differences between I1 and I2.
All changes relate to either a restructuring or renaming. However, the fact of the higher granularity
of graphical elements was brought up by D2. If we were to provide a higher granularity for graph-
ical elements and specifically list the different transformation operations as features, this would
constitute a refinement over I1.

4.4.2.4 Feature Model Comparison

The metrics of all feature models are shown in Table 4.2. The rows in bold highlight the final
feature model version of the participants and the investigator. The number of feature configurations
is based on the common features among the three final feature model versions. In total there are 17
common features. The lower number of configurations for D22 is mostly due to the fact that D2
considered the Input feature mandatory.

In summary, the differences mainly relate to the different levels of granularity. For instance,
both D1 and D2 have the object manipulation methods as separate features, whereas I2 does not.
Conversely, our feature model has a finer granularity for event handling. Finally, D2 and the inves-
tigator both identified auxiliary features (grouped under Helpers in D22 and Utilities in I2) which
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Table 4.2: Feature model metrics for all feature models (rows in bold highlight the final feature
model version of each person)

Feature
Model

Features Groups Leafs Mandatory Optional OR-
groups

XOR-
groups

Configurations4

D11 10 3 7 1 1 2 0 –

D12a 16 5 11 3 1 2 1 –

D12b 22 8 14 3 3 4 1 992

D21 32 9 23 5 2 6 1 –

D22 32 10 22 5 1 7 1 564

I1 26 10 16 3 7 4 0 –

I2 27 9 18 3 7 4 1 1008

are not present in D12b.

4.5 Discussion
This section summarizes the interesting insights gained from the discussions with the participants.
We discuss these in the following subsections.

4.5.1 Configurations provided by Feature Model
It is important that the feature model does not restrict the possible configurations of the framework.
This should even be the case when there are some configurations that are not good choices in most
of the cases. The configurations should only provide what is needed. The information about how
the decision of feature choices affect certain high-level goals can be encoded in an impact model.

One such example is the discussion relating to Alpha Transparency and Hardware Acceleration
which we had initially described as the former requiring the latter. However, as both participants
pointed out this is not the case. The fact that the performance is negatively impacted when us-
ing only Alpha Transparency could be reflected in an impact model describing the goal Increase
Performance.

4.5.2 Naming of Features
Accurately describing functionality in one or a few words is very difficult. D1 elaborated that
“the most senior Java programmer we have at the company says his most difficult challenge he

4Disregarding differing features, i.e., only based on the common features of the feature models D12b, D22, and I2.
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has at work is naming stuff. He says, finding a proper name for a feature or functionality or some-
thing [...] is often more complicated than actually implementing it”D1. As D1 explained, describing
something with one or two words requires the reader to interpret what the author meant by it. In-
terestingly, naming was not a topic that was discussed with D2. The names of features were mainly
deduced from the API element names. As a result, D2’s and our feature model have a lot of the
same feature names.

D1 reasoned that a feature does not describe a state or an object and suggested to use verbs
in the name. This is an interesting suggestion and feature models generally support longer feature
names. In certain cases, features describe what can be accomplished with the functionality. For ex-
ample, the feature SwingIntegration as a sub-feature of Interactive allows capturing Swing events
within Minueto. Based on this name, D2 did not understand what functionality it provides. As a
result, we renamed it to “Capture Swing Events”. An example where one word can sufficiently
describe functionality is the class MinuetoStopwatch. In our first feature model we named
this sub-feature of Utilities accordingly Stopwatch. Interestingly, both participants pointed out that
the functionality that it provides is a timer (for instance, to calculate the frame rate), and suggested
Timer as the name for this feature.

4.5.3 Feature Model Granularity
The decision on what constitutes a feature and which granularity to use is not clear. This is reflected
in the choice and granularity of features of the two participants. For instance, D1 chose a high-
level view of Minueto focussing on the main functionality that Minueto provides. D2, however,
considered most of the functionality provided by the API, and specifically chose the drawing and
manipulations of graphical elements as the area where more detail is necessary. Contrary to our
own feature model, D2 also split the image transformation methods into single features, i.e., each
feature providing a single transformation method.

The finest granularity that is possible is bound by the API. For example, if different parameters
relate to different features, the number of parameters confine the maximum level of granularity.
The granularity most likely is also dependent on the size of a framework in order to limit the
number of features and to maintain concise feature models that do not overload the user. It remains
to be investigated further which granularity level is helpful to the user.

4.5.4 Mapping from Feature to API
The question of how features are mapped to the API, i.e., which parts of the API belong to which
feature, is dependent on the granularity of the feature model. Both participants mentioned that a
feature sometimes maps to a class, and sometimes to one or more functions. For D1, the correct
way is to “[map] more to function then to class, because when we’re talking about features, for

61



4.6 Study Limitations and Threats to Validity

me, I’m thinking more in terms of things you can do, more than things you can have”D1, unless the
feature contains all methods of the class. In addition, D1 confirmed that sometimes methods in an
interface indicate the presence of a certain feature and as such belong to a different feature instead
of the feature the class is defined in.

4.5.5 Applicability of Concernification
It is important to verify whether the proposed concern interface for frameworks is practical and
could potentially help users in understanding the framework. As D2 pointed out during the inter-
view, “if a developer was asking quickly ’ok, what can I do with Minueto?’ I think this would give
them a good overall representation of the capabilities of the system”D2. D1 saw the use of con-
cernification heavily on the training aspect of developers that need to familiarize themselves with
a framework they do not know yet. From his own industrial experience, he remembered that in “a
lot of jobs I’ve come into the company and they’ve had some very elaborate framework. And the
expectation is within a week or so I’m functional in that framework”D1. He mentioned that docu-
mentation and training is an issue in his company. Because a lot of frameworks used in industry are
large and complex, understanding them is difficult. As such, he does not see it as helpful, however,
more in terms of learning a framework: “one of the things I want to bring is like, how can this
be used in industry. I think in that term there’s a very powerful use case. In large applications, in
being able to build long term and stuff that has like 300 classes and 5000 features and so on, I’m
not as sure, but as a tool for learning a framework or something that’s in place and so on, this is
beautiful.”D1.

4.6 Study Limitations and Threats to Validity
According to [104] one of the threats to validity in qualitative studies is representativeness. One
perspective of the representativeness is the choice of the participants of our study on Minueto that
we interviewed. The two participants are the two developers of Minueto. We looked at the commit
history of the Minueto Subversion repository and found that the two participants are the only
committers to the Minueto framework and its samples. Another perspective of representativeness
is the choice of Minueto. Our study only focussed on one framework. While this framework is
mostly used by university students for course projects, its conciseness allowed us to study it in more
detail. To mitigate and confirm whether the findings of this study also apply for other frameworks,
in Chapter 6, we examine a large framework that is widely used in industry in the evaluation of our
algorithm to automatically concernify a framework.

We had no influence on how thorough the participants created the initial feature model. They
were provided with a short explanation of feature models along with a small car example feature
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model and a link for further reading. Coming up with the features and organizing them within the
feature model was completely up to the participants. They were not shown any feature model of
Minueto beforehand to ensure that they had an unbiased view on their framework.

We performed interviews to mitigate the questions of completeness and feature model un-
derstanding. During the interviews it became apparent that certain feature model concepts were
unclear, which resulted in different interpretations of what the feature model describes. One partic-
ipant was unsure whether the feature model allows different sub-trees to create new groupings. The
other participant was unsure how to describe a feature in one group that could apply to all features
in another group (e.g., handling of window focus events can be done in all kinds of windows).

One problem was that of what a feature is. Therefore, we proposed to the participants to regard
a feature as something that the user can choose to use or not use. This revealed some features
that the participants had not considered as such before. Another problem revolved around whether
the feature model describes what can be used of the framework at run-time (at the same time), or
whether what can be used in the same application. This affected only the relationships, but not the
features.

The interviews allowed us to ask clarification questions on the feature models and address the
issues in understanding the feature model notation and its possibilities. Therefore, we elaborated
modified versions of the participants feature models.

4.7 Summary
This chapter presented the user study we conducted with the two developers of Minueto. The
developers were asked to each create their own feature model of Minueto first. We then conducted
semi-structured interviews with them to find out which information they used when elaborating the
feature model. Furthermore, we validated the accuracy of our manually created feature model of
Minueto by comparing it to the ones elaborated by the developers. The results confirm our theory
of the use of different information that is available from a reusable framework and its API. This
includes the inheritance hierarchy, the usage of the API in runnable examples, and cross-references.

The understanding of what a feature is and the granularity of features heavily influences the
feature model. While one developer had a more high-level feature model, the other developer
had a finer granularity. The results show that the granularity can depend on the specific feature in
question. For some features, a coarse-grained granularity is enough, whereas for other features fine-
grained granularity makes more sense. For example, Minueto allows manipulations of graphical
objects (such as rotating, scaling, etc.). While we did not identify these as specific features, the
second developer identified them as features in the initial feature model, and the first developer
identified them during our interview. In addition, both developers in large agreed with our identified
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features and their organization in a feature model and provided minor corrections. Interestingly, our
feature model and that of the second developer share similarities in their structure and the features.

To help a framework designer in creating an initial concern interface for a framework, the next
chapter describes an automated concernification algorithm that makes use of the information from
the framework’s API and usage of the API in runnable examples.
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Automated Concernification

The previous chapters showed that concernification is not trivial to do, even for developers of a
framework. In order to support developers in concernifying their framework we discuss in this
chapter an automated concernification algorithm that produces an initial concern interface. The
result can then be further fine-tuned and adjusted by the developer who as the domain expert has
the knowledge of the framework’s features and constraints.

We begin by providing a brief overview. We then establish guidelines (information) that the
algorithm makes use of (Section 5.2) and define the specific information that is available of the
framework (Section 5.3). We then establish hypotheses in Section 5.4 that our algorithm is based
on. There are two kinds of hypotheses, those that we assume (require) to always hold, and those that
depend on the quality of the examples provided with a framework. Section 5.5 explains in detail
the algorithm and shows a small example that helps the reader to follow along the intermediary
results during the process. Section 5.6 describes the implementation of the algorithm. We conclude
this chapter with a summary in Section 5.7.

5.1 Overview
Ideally, a concern interface is developed together with a framework. However, existing frameworks
do not come packaged with a concern, and hence we need to minimize the effort that is required for
the framework developers to create a concern interface for the framework. Also, expert framework
users that wish to use a framework at the modelling level might want to concernify a framework on
their own. Therefore, our goal is to provide support for creating an initial concern interface for a
framework using an automated approach. This approach needs to automatically find user-relevant
features (step 1a in Section 3.4) for the framework, organize them in a feature model (step 1b), and
decompose the framework’s API (customization and usage interface) across the features (steps 2a
and 2b).

Because there is no single correct feature model—the same set of feature relationships can
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be expressed with many different feature models—the automatically generated feature model is
presented to the developer or expert user, i.e., the domain expert, who is then able to make adjust-
ments.

5.2 Guidelines
Our approach makes use of runnable code examples that often come packaged with the framework
to showcase how the framework is used. The intuition behind this is that code examples exemplify
how to use a specific feature or a subset of the features of the framework. Research has identified
examples as an important artefact that developers frequently use to learn how to use an API [71,91,
92]. This intuition was confirmed by the developers of the Minueto framework (see Section 4.4.1)
which we used as a concernification example (see Section 3.5). Ideally, each code example uses
the entire usage interface of a feature (and potentially other features) in order to be able to detect
that they are part of the same feature and belong together.

The combination of the framework API and its runnable code examples allows us to use the
following information:

• Object-Oriented Hierarchy of the Framework: Subclasses and classes of the framework
that implement an interface are potential candidates for sub-features, because they add to the
superclass or provide a specialization.

• Cross-references in the Framework API: A cross-reference occurs when a type (class)
is being used as a parameter or return type in a public operation of another class. A cross-
reference from class A to B indicates that when using class A, class B must also be used.

• Code examples exemplifying Framework Use: Code examples directly showcase the use
of the framework API. Mostly, this involves small, typically minimal examples that show
how to use a particular feature, or a set of features together. Code examples showcase the
customization of a framework by extending or implementing classes or interfaces, as well as
usage of the usage interface (API) by instantiating classes and calling operations.

• Framework Modularization: Packages are generally used to structure classes with com-
mon or related functionality. Classes within the same package could indicate different varia-
tions of the same functionality, or a grouping of classes to accomplish one functionality/fea-
ture. Similarly, some programming languages (such as Java) provide the ability to add inner
classes to a class. We consider this a form of structuring as well.
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5.3 Definitions
This section precisely defines the information that is available to the concernification algorithm.
Assuming that there exist runnable code examples that are provided along with the framework, the
basic information building blocks are:

• Framework code element e: A framework consists of different elements, such as a class
(including exception), interface, operation, attribute or package. We consider all of those
elements to be code elements regardless of their visibility.

• Runnable code example c: Runnable code examples that showcase how to use the frame-
work in different ways are often provided along with the framework.

• Set of code elements API: The user interface of the framework consists of a set of code
elements e that are visible, i.e., they can be used by the user.

• Set of relationship types T : There can be different types of relationships between code
elements. These types are:

– is subclass of,

– implements interface of,

– is operation of,

– is attribute of,

– has crossreference to,

– is inner class of,

– is in package,

– is sub package of, and

– throws exception.

The goal of our algorithm is to determine the features of a framework, and associate with each
feature the corresponding parts of the API. We assume that frameworks consist of a set of features
with more than one user-perceivable feature. Some of these features are mandatory, whereas other
features can be used or not depending on the user’s need. We therefore define a feature f as a
user-perceivable feature of a framework. The usage interface for a given feature f is defined as the
relation api : f ÞÑ teu on the usage interface of the complete framework API . apipfq provides the
set of code elements whose elements e P API and satisfies that an e only belongs to one feature,
ensured by the following properties,
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• apipfq Ď API

•
Ť

f

apipfq “ API

• @f1, f2 papipf1q
Ş

apipf2q “ Hq.

The last property also implies that each feature adds something meaningful, i.e., something new.
Therefore, API elements required by multiple features should be put into a shared parent feature
or a shared parent realization model. Due to the composition in CORE (see Section 2.4.3), these
API elements will be available to the user whenever any of the child features is selected.

Using these basic elements we establish the uses relationship which describes that one or more
elements e of apipfq are used by a code example. In addition to these elements we define the
relation usedIn : e ÞÑ tcu which provides the set of code examples C a given code element e is
used in.

5.4 Hypotheses
In this section we establish hypotheses about the intent of the framework designer, as well as the
quality of the framework’s API and the framework’s code examples. The first 5 hypotheses are
common principles of good API design that we always expect to be true. They are:

1. All API code elements are intended to be used by the user.

2. Each code example provided with the framework shows how to use a specific feature (or a
subset of the features) of the framework.

3. A code example might cover more than one feature.

4. All code examples make correct use of the framework, i.e.,
@cpc uses f ñ c achieves something meaningful with fq

5. If the framework defines abstract classes/interfaces, and provides

(a) also two or more implementations of those classes/interfaces, then the implementation
classes represent different features/behaviour. The user should instantiate the desired
one(s) to configure the framework. This represents closed variability and should be
included in the variation interface.

(b) no concrete implementations, then the user is supposed to implement the subclass/in-
terface and pass the implementation to the framework. This represents open variability
and should be included in the customization interface.
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(c) only one implementation of an interface, then the user can either use it or provide his
own implementation. The “own implementation” variant should be represented in the
variation interface as an optional feature with a corresponding customization interface.

Ideally, if a framework consists of n independent features, then there should be n code examples,
i.e., there would be a 1-1 correspondence between code examples and features. If each one of
the code examples would use all code elements of the API of the feature it demonstrates, then it
would be easy to determine the subset of the framework’s API related to the feature. Unfortunately,
features are rarely independent. It is also unrealistic to assume that “real-world” frameworks come
with the perfect examples that showcase all features individually, provide examples of all possible
feature combinations, and make use of all the API elements related to every feature.

To account for the imperfectness of the real world, we define an additional set of hypotheses
that quantify how well the code examples cover the features and the API provided by the frame-
work, and how focussed the code examples are. The hypotheses are then used in the proposed
concernification algorithm to enable/disable different processing steps:

H1. Every user feature is used in at least one code example:
@f pDc | c uses apipfqq

(a) There is a code example that demonstrates every possible combination of features. This
allows the algorithm to detect XOR relationships between child features.

(b) For every feature, there exists a code example using the feature that uses the minimal
number of additional features. This allows the algorithm to detect OR relationships
between child features.

H2. If f1 and f2 are two distinct user features, then there exists at least one code example in
which they are not used together:
f1 ‰ f2 ùñ Dc | c uses apipf1q ^  ppc uses apipf2qq

H3. All code elements of the API related to a user feature are used in at least one code example.
@f p@e P apipfq | usedInpeq ‰ Hq

H4. Two code elements e1 and e2 belong to the same feature, if both code elements are used in
the exact same set of code examples.
pDe1, e2 | usedInpe1q “ usedInpe2qq ùñ D!f | e1, e2 P apipfq. As such, every element
belonging to the API of a given feature is used in the same set of code examples.
@f p@e1, e2 P apipfq | usedInpe1q “ usedInpe2qq
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5.5 Algorithm
This section describes the algorithm in detail. We begin by describing the input to the algorithm.
Then, we provide a general overview of the algorithm and describe each step of the algorithm in
detail after. We use a small example based on the Minueto framework to exemplify the algorithm
by showing the intermediate results during the process.

5.5.1 Input
As a preparation, the set of code elements CE of the framework along with the set of relationships
R between them need to be determined. Furthermore, the set of code examples C must be deter-
mined. In addition, the usage information of which example makes use of which code elements is
required. Once all this information has been gathered, the input to the concernification algorithm
is comprised of:

• CE “ tceu, the set of code elements, regardless of their visibility,

• R “ tpces, cet, tqu, the set of relationships between code elements given as a tuple with the
source code element ces, target code element cet and the type of the relationship t P T ,

• C “ tcu, the set of code examples,

• usedIn : ce ÞÑ tcu, the relation from a code element to the set of code examples it is used
in,

• options, the options describing which of the additional hypotheses are assumed to be holding
for the examples.

In the following sections describing the algorithm, it is assumed that a class contains its ele-
ments (i.e., attributes and operations) already, and the hierarchy information is provided within
the classes.

5.5.2 Overview
To determine the feature model of a framework, the concernification algorithm works with a di-
rected acyclic graph (DAG) where the nodes represent potential features and the edges relation-
ships between them. The DAG used in our algorithm consists of a set of nodes V and a set of edges
E. The graph contains a property roots referring to the root nodes in the DAG. Nodes represent
the potential features and are processed in the algorithm based on the available information of the
framework and examples. Each node stores the following information:
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• classes: The set of classes that belong to this potential feature. Each class contains the ele-
ments that belong to this class within the potential feature.

• examples: The mapping e ÞÑ C from code elements to the set of examples the element is
used in. The union of examples for all code elements represents all examples the potential
feature is used in.

• name: A name for the node. This is mostly important for grouping and package nodes with-
out any classes. The names of nodes with classes can always be derived from the class names.

Each edge represents a multiset (bag) of relationship types T representing the type of dependencies
this edge represents. The possible types of relationships are:

• inheritance: Indicates an inheritance relationship between two nodes. This represents both
the is subclass of and implements interface of relationships.

• containment: Indicates that the elements in the source node belong to the same class as the
target node. This represents both the is operation of and is attribute of relationships.

• crossref: Indicates that an element from the source node references an element from the
target node. This represents the has crossreference to relationship as well as the throws ex-
ception relationship.

• structural_grouping: Indicates that the source node belongs to the target node, the latter
being a node representing a package or outer class. This represents the is inner class of, is in
package and is sub-package of relationships. For brevity, from now on we call it grouping.

In the first phase, the DAG is created and populated with individual trees for all hierarchies. In
the second phase, the trees are connected within the DAG to form one connected graph and then
populated with all the information available. In the third phase, the DAG is simplified by removing
edges in order to reduce it to a tree that is used as the final feature model structure. In essence, the
code-centric DAG from the first phase and second phase needs to be converted into a user-centric
tree that represents the feature model from the user’s perspective.

Initially, the DAG is populated with separate directed rooted trees, one for each inheritance
hierarchy that is found in the framework code. Each directed rooted tree has an orientation towards
the root (also called anti-arborescence or in-tree), i.e., edges are pointing in the inverse direction.
This allows us to describe dependencies between two elements (potential features), such as, X is a
sub-class of Y. A node is created for each class. The OO hierarchy is reflected using directed edges
from the sub-class to the superclass, as well as for classes implementing an interface.
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Figure 5.1: Overview of the Concernification Algorithm

At this point, the DAG consists of a disjoint union (forest) of individual directed rooted trees.
The trees need to be connected in the second phase. Packages and outer classes can potentially
provide a structural grouping of common or related functionality. Therefore, the separate trees are
then connected to a single DAG based on the grouping relationships of their root element(s). Based
on the usage information from the code examples, framework code elements with the same usage
are combined into the same node. Operations that are part of the same node but with differing usage
are separated. For example, operations of a class that are used in a subset of examples compared
to the class itself indicate that the operation could potentially belong to a different feature. At
this point, only the relationship type crossref has not been introduced into the graph yet. Cross-
references between API elements introduce additional dependencies. If using an operation requires
the use of another type, e.g., as a parameter to be passed when calling the operation, an edge of
type crossref is required to indicate this dependency.

At the end of phase two, the DAG is populated with all available information. It is possible at
this point that a node has more than one outgoing edge. In order for a feature model to be retrieved,
the DAG needs to be converted to a directed tree. The goal of the third phase is to simplify the
edges while maintaining the dependencies among API elements.

An overview of the steps of the concernification algorithm is shown as a flow chart in Fig-
ure 5.1. The first phase is shown on the right-hand side of the flow chart, the second phase on the
top of the left-hand side, and the third phase is shown on the bottom of left-hand side. The figure
also shows the hypotheses that must hold in order for a step to be executed.
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Figure 5.2: Class Diagram of Running Example

To aid the reader in understanding intermediate results between processing steps of the algo-
rithm, we use a running example based on the Minueto framework (see Section 3.5 for more detail
about Minueto). The example class diagram is shown in Figure 5.2. It contains a subset of API
elements from the Minueto framework and shortened class names for brevity. Names of interfaces
are prefixed with “I”, and names of abstract classes are written in italic font. For the sake of this
example, we assume that all hypotheses outlined in Section 5.4 hold.

The complete process overview of concernification is given in Algorithm 5.1 which shows the
concernify function. Some of the steps are only enabled if the corresponding hypotheses hold.
We first explain several auxiliary functions that are used by different steps in the following section.
Following that, we describe each step in more detail with the reasoning on why this is done.

5.5.3 Auxiliary Functions
Within several of the algorithm steps, recurring functionality is used to merge and remove nodes.
These auxiliary functions are defined as follows and will be used in the following sections that
explain the individual steps of the algorithm in detail.

Algorithm 5.2 shows merging of two nodes. While merging is inherently symmetric, for conve-
nience, the toMerge node is merged into the base node. Therefore, the properties of the nodes
are merged. For classes this means that if the same class exists in both nodes, its contents are
merged.
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Algorithm 5.1 Concernification Algorithm
1: function CONCERNIFY(classes, R, C, usedIn, options)
2: g Ð create new DAG
3: for all hierarchy h P classes do
4: rootÐ INITIALIZEHIERARCHY(g, h, R, usedIn)
5: PROPAGATEEXAMPLEUSAGE(g, root)
6: if options.H1 and options.H3 then
7: REMOVEUNUSEDELEMENTS(g, root)
8: end if
9: if options.H2 and options.H4 then

10: SIMPLIFYHIERARCHY(g, root)
11: PULLOPERATIONSOUT(g, root)
12: end if
13: g.rootsÐ g.rootsY root
14: end for
15: CONNECTROOTS(g, R)
16: if options.H2 and options.H4 then
17: MERGESIMILARNODES(g)
18: end if
19: ADDCROSSREFERENCES(g)
20: SIMPLIFYGRAPH(g, C)
21: if options.reduce_size then
22: REDUCESIZE(g)
23: end if
24: return CONVERTTOCONCERN(g)
25: end function
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Algorithm 5.2 Merging Two Nodes
1: function MERGENODES(g, base, toMerge)
2: base.examplesÐ base.examplesY toMerge.examples
3: base.classesÐ base.classesY toMerge.classes
4: for all outgoing edge e P outgoing edges of toMerge do
5: tÐ target of e
6: REPLACEEDGE(g, e, base, t)
7: end for
8: for all incoming edge e P incoming edges of toMerge do
9: sÐ source of e

10: REPLACEEDGE(g, e, s, base)
11: end for
12: g.V Ð g.V ztoMerge
13: if g has cycle then Ź handle any resulting cycle immediately
14: nodesÐ find nodes involved in cycle
15: baseNodeÐ first node P nodes
16: for all node n P nodeszbaseNode do
17: MERGENODES(g, baseNode, n)
18: end for
19: end if
20: end function

Algorithm 5.3 Replacing an Existing Edge in the Graph
1: function REPLACEEDGE(g, e, newSource, newTarget)
2: if D edge x | pnewSource, newTargetq P g.E then
3: x.T Ð x.T Y e.T
4: else
5: xÐ new edge pnewSource, newTargetq
6: x.T Ð e.T
7: g.E Ð g.E Y x
8: end if
9: g.E Ð g.Eze

10: end function
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Algorithm 5.4 Moving Node Properties to Another Node
1: function MOVENODEPROPERTIES(base, toMove)
2: base.examplesÐ base.examplesY toMerge.examples
3: base.classesÐ base.classesY toMerge.classes
4: toMove.classes “ H
5: end function

All incoming and outgoing edges of the toMerge node are changed such that they are the
source, and target respectively, of the base node. If an edge already exists, the relationship types
are merged and the existing edge is removed from the DAG. At the end, the toMerge node
can be safely removed from the DAG. The corresponding replaceEdge function is shown in
Algorithm 5.3.

Whenever two nodes are merged, due to their edges being consolidated, it is possible that a
cycle within the graph exists as a result. Any cycle needs to be removed as it violates the properties
of a DAG. Since the nodes forming the cycle have a strong dependency between each other, we
therefore merge those nodes, thereby breaking the cycle.

In certain cases, it is required to keep a node, but its properties are determined to belong to
another node. This is the case when a node needs to be kept for grouping reasons to group the child
nodes. Algorithm 5.4 defines the moveNodeProperties function.

Lastly, some features that are not used can safely be removed from the graph because they are
not deemed relevant (e.g., they were not used in any example). Algorithm 5.5 defines the auxiliary
function removeNode. In this case, for all nodes for which the removed node is an intermediary,
their edges are connected to the removed node’s parent(s). If the removed node is the root, any
source node that does not have any other parent will become a root.

5.5.4 Initializing Hierarchies
The following subsections describe the individual steps of the concernification algorithm in detail.
As a first step, the framework classes provided as an input are processed to create a DAG consisting
of several disjoint directed rooted trees, where each directed rooted tree represents an inheritance
hierarchy. As a reminder to the reader, the orientation of the trees are towards the root, i.e., the
edges are directed towards the designated root node. The algorithm is defined in Algorithm 5.6.
For each class in the code of the framework, a corresponding node is created. The OO hierarchy is
replicated between nodes using edges with type inheritance (which represents both subclasses and
implements relationships).

However, due to the fact that—depending on the programming language—multiple inheritance
is possible, a node can be part of more than one hierarchy. For example, while Java allows inheri-
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Algorithm 5.5 Removing a Node from the Graph
1: function REMOVENODE(g, node)
2: if D outgoing edge of node then
3: for all outgoing edge o P outgoing edges of node do
4: pÐ target of o
5: for all incoming edge e P incoming edges of node do
6: sÐ source of e
7: REPLACEEDGE(g, e, s, p) Ź replaceEdge removes e from the graph
8: end for
9: g.E Ð g.Ezo

10: end for
11: else
12: for all incoming edge e P incoming edges of node do
13: sÐ source of e
14: g.rootsÐ g.rootsY s
15: g.E Ð g.Eze
16: end for
17: end if
18: g.V Ð g.V znode
19: end function

Algorithm 5.6 Creating the Initial Hierarchy for all Classes
1: function INITIALIZEHIERARCHY(g, hierarchy h, R, usedIn)
2: repeat
3: cÐ current visited class of h
4: nÐ new node for c
5: n.classesÐ tcu
6: n.examplesÐ usedInpcq
7: g.V Ð g.V Y n
8: for all super-class or interface cet P R | pces “ c
9: and tis subclass of, implements interface ofu Q tq do

10: sÐ node for cet
11: eÐ new edge pc, sq
12: e.T Ð rinheritances
13: g.E Ð g.E Y e
14: end for
15: until all classes in h visited
16: end function
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Figure 5.3: Intermediate result after initializing hierarchies (roots of hierarchies shown in grey)

tance only from one class, multiple interfaces can be implemented. This means that a class that is
a sub-class and also implements an interface will have two outgoing edges.

Furthermore, based on our hypotheses, we initialize a custom sub-class node for any class of
the framework that was sub-classed within the examples. However, interface methods always need
to be implemented in the classes implementing them. Hence, we only take those methods into
account once where they are initially declared and attribute all example usage to this method. We
apply the same for overriding methods in sub-classes.

Figure 5.3 shows the intermediate result after initializing all hierarchies for the running exam-
ple. The root of each directed tree, representing a hierarchy, is highlighted in grey. The example
usage is depicted in the second column of each node. In our example we considered five runnable
examples in total. At this point, the DAG consists of several trees, one for each hierarchy.

It is possible that sub-classes have a super-class providing a shared implementation that is
not visible (i.e., its visibility is not public). We consider such classes as potential groupings and
maintain a node for them, i.e., they are part of a hierarchy. For example, this is the case for
BaseWindow which is package-private and contains the shared implementation for the frame
and fullscreen window options.
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Algorithm 5.7 Propagating the Example Usage within a Hierarchy
1: function PROPAGATEEXAMPLEUSAGE(g, root)
2: repeat
3: for all leaf nodes l P non-visited nodes of tree for root do
4: mark l as visited
5: pÐ parent node of l
6: p.examplesÐ p.examplesY l.examples
7: end for
8: until all leaf nodes visited
9: end function

5.5.5 Propagating Example Usage
Each node in the DAG has its own example usage based on the usage of the corresponding class
in the examples. However, all public methods and fields of a super-class are available in sub-
classes. Therefore, we need to take into account that when using an instance of a sub-class also
the super-class is used. We do this by propagating the example usage up within the inheritance
hierarchy. Algorithm 5.7 shows the definition of the example usage propagation algorithm for a
given hierarchy.

Figure 5.4 shows the intermediate result after the propagation. Updated nodes or edges are
highlighted with a thick stroke. As a result of the propagation, BaseWindow and Image now
contain the union of their own plus the example usage of their sub-classes.

5.5.6 Removing Unused Nodes and Elements
Algorithm 5.8 defines the step that removes nodes that only contain unused elements as well as
unused elements within used nodes. If hypotheses H1 and H3 are assumed to hold for the given
code examples, this means that every user feature and all of the code elements corresponding to
their APIs are used at least once. Hence, if the DAG contains nodes that have only unused elements,
the nodes can be removed since they do not contribute to the API of a feature. The same applies to
unused elements in used nodes.

In the example, the class EventQueueEmptyException is the only node that is not used
in any example. It is an unchecked exception that would only occur if someone incorrectly used
the EventQueue class by calling handle() without ensuring beforehand that there is an event
to handle in the queue. This is done using the hasNext() method. As a result, this node, and
therefore the directed rooted tree of the hierarchy, is removed.
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Figure 5.4: Intermediate result after propagating example usage (updated nodes highlighted with
thick stroke)

Algorithm 5.8 Removing Unused Nodes and Elements
1: function REMOVEUNUSEDNODES(g, root)
2: repeat
3: for all leaf nodes l P non-visited nodes of tree for root do
4: mark l as visited
5: if l.examples is empty then
6: REMOVENODE(g, l)
7: else
8: for all class c P l.classes do
9: for all element e P elements of c do

10: if l.examplespeq is empty then
11: remove e from c
12: end if
13: end for
14: end for
15: end if
16: end for
17: until all leaf nodes visited
18: end function
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Algorithm 5.9 Simplifying a Hierarchy
1: function SIMPLIFYHIERARCHY(g, root)
2: repeat
3: for all leaf node l P non-visited nodes of tree for root do
4: mark l as visited
5: pÐ parent node of l
6: if l.examples “ p.examples then
7: if l is a grouping for its children then
8: mark l as potential grouping node
9: MOVENODEPROPERTIES(p, l)

10: else
11: MERGENODES(g, p, l)
12: end if
13: end if
14: end for
15: until all leaf nodes visited
16: end function

5.5.7 Simplifying Hierarchies
At this point we have several directed rooted trees in the DAG which represent the individual
inheritance hierarchies. Any class that is not within a hierarchy will be in a tree that only contains
a single node. Hypotheses H2 and H4 state that code elements belong to the same feature if they
are used in the same examples. Based on the example usage, we can therefore merge nodes with
the same usage set. This requires the comparison of all nodes in the DAG. In order to improve the
performance, we use this step to perform this simplification within each directed rooted tree that
represents an OO hierarchy first. We only compare each child with their parent. This reduces the
overall number of nodes in each tree, and thus reduces the number of comparisons required when
merging nodes later. Algorithm 5.9 defines the hierarchy simplification step.

It is possible that a feature provides a logical grouping for its children. In such a case, the node
itself needs to be kept. Its contents though can be moved to the parent node. One such case can be
seen in Figure 5.5, which shows the state of our example after simplifying all hierarchies. The node
representing interface IWindow provides a grouping for the different types of windows based on
the inheritance hierarchy and example usage. The properties of the IWindow node were moved to
its parent. Because it is empty, the grouping at least has an OR relationship with its children. At a
later stage it can be determined, based on the indication of hypothesis H1a, whether the IWindow
grouping can actually be used to determine the relationship of the children as XOR.
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Figure 5.5: Intermediate result after simplifying hierarchies (updated nodes highlighted with thick
stroke)
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Algorithm 5.10 Pulling Operations Out of their Class
1: function PULLOPERATIONSOUT(g, root)
2: repeat
3: for all leaf nodes l P non-visited nodes of tree for root do
4: mark l as visited
5: for all class c P l.classes do
6: for all operation o P operations of c do
7: if l.examplespoq ‰ H and l.examplespcq ‰ l.examplespoq then
8: cs Ð copy of c with o as the only element
9: nÐ new node for o

10: n.classesÐ tcsu
11: n.examplesÐ l.examplespoq
12: remove example usage of o from l.examples
13: g.V Ð g.V Y n
14: eÐ new edge pn, lq
15: e.T Ð rcontainments
16: g.E Ð g.E Y e
17: end if
18: end for
19: end for
20: end for
21: until all leaf nodes visited
22: end function

5.5.8 Pulling Operations Out
If hypotheses H2 and H4 hold, all code elements belonging to the same feature are used in the same
code examples. Therefore, if an operation is used in examples, but not used in the same examples
as the class that contains the operation, the operation can potentially belong to a different feature.
As a consequence, we move those operations out of the node that contains the class into a new
child node.

Algorithm 5.10 shows the definition of the pullOperationsOut function. The pulled out
operation is placed in a shallow copy of the class. This makes it easier at a later stage to perform a
class merge when nodes containing the same class are merged. A potential performance improving
step could be to already merge operations of the same class with the same usage. For brevity, this
was left out. These nodes will then be merged in a subsequent step.

Figure 5.6 shows the result after pulling out operations of all hierarchies is finalized. All oper-
ations with an example usage subset compared to the class are moved out into a new child node.
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Figure 5.6: Intermediate result after pulling operations out of their class (new or updated nodes and
edges highlighted with thick stroke)
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This makes it possible in subsequent steps to merge the pulled out operations with other nodes, if
their example usage matches.

5.5.9 Connecting the Individual Hierarchies
At this point the first phase is concluded. The DAG contains several directed rooted trees that
represent the individual hierarchies. The final goal is to deduce a single directed rooted tree repre-
senting the feature model. To establish a DAG with a single root we therefore need to connect the
individual hierarchies. Packages (and inner classes) provide a structural grouping of classes. We
make use of this information to connect the roots of all hierarchies. In order for the single DAG to
be created, the roots of all clusters are connected based on the structural grouping of their classes.

Algorithm 5.11 shows the function connectRoots that takes care of this. First, nodes for all
packages are created and connected with edges between a sub-package and its parent package. The
node representing the root package of the framework becomes the root of the DAG. Then, the roots
of the directed rooted trees of the individual hierarchies are connected with the nodes representing
the structural grouping node of the root’s classes. Edges with type grouping are added to the graph
to establish this structural grouping.

Once this step of the algorithm completes, the DAG has one root node (representing the root
package). Figure 5.7 shows the resulting DAG for our example. Depending on the package and
hierarchy structure, it is possible at this point that a node has several outgoing edges to different
packages. For example, in the Minueto framework, the interfaces MinuetoDrawingSurface
and MinuetoWindow are located in different packages (the former in org.minueto.image,
the latter in org.minueto.window). This is the case even though MinuetoWindow extends
the interface of MinuetoDrawingSurface. Due to the fact that they are within the same node,
their node has two outgoing edges. The same is reflected in Figure 5.7 for the node containing
IDrawingSurface and IWindow.

5.5.10 Merging Similar Nodes
The DAG at this point contains many different nodes, either representing packages, or containing
classes or their elements. Based on H2 and H4, if two elements are used in the same set of exam-
ples, they belong to the same feature. Therefore, across the complete DAG, all nodes with the same
example usage need to be merged.

Algorithm 5.12 shows the algorithm for the mergeSimilarNodes function. The example
usages of all nodes are compared with each other. If two example usages match, the two corre-
sponding nodes are merged into one using the mergeNodes auxiliary function.

Figure 5.8 illustrates the intermediate DAG of our example after merging is completed. Most
notably, the register handler methods as well as the draw method, which were previously pulled
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Algorithm 5.11 Establishing a DAG with a Single Root
1: function CONNECTROOTS(g, R)
2: packagesÐ determine package structure of all classes in g through R
3: for all package p P hierarchy of packages do
4: nÐ new node for p
5: n.nameÐ name of p
6: g.V Ð g.V Y n
7: for parent package s P R | ces “ p do
8: eÐ new edge pn, pq
9: e.T Ð rgroupings

10: g.E Ð g.E Y e
11: end for
12: end for
13: for all root r P g.roots do
14: for all class c P r.classes do
15: if Dx P R | ces “ c and t “ is inner class of then
16: oÐ determine node for outer class x.cet
17: eÐ new edge pr, oq
18: e.T Ð rgroupings
19: g.E Ð g.E Y e
20: else
21: xÐ determine parent package P R | ces “ c and t “ is in package
22: pÐ determine node for parent package x.cet
23: eÐ new edge pr, pq
24: e.T Ð rgroupings
25: g.E Ð g.E Y e
26: end if
27: end for
28: end for
29: g.rootsÐ troot packageu
30: end function
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Figure 5.7: Intermediate result after connecting the roots (new or updated nodes and edges high-
lighted with thick stroke, package nodes with a dashed border)

Algorithm 5.12 Merging Nodes with the Same Usage
1: function MERGESIMILARNODES(g)
2: for all node n1 P g.V do
3: for all node n2 P g.V zn1 do
4: if n1.examples “ n2.examples then
5: if n1 and n2 are not marked as potential grouping nodes then
6: MERGENODES(g, n1, n2)
7: end if
8: end if
9: end for

10: end for
11: end function
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Figure 5.8: Intermediate result after merging nodes with the same example usage (merged nodes
highlighted with thick border)
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Algorithm 5.13 Adding Cross-references to the Graph
1: function ADDCROSSREFERENCES(g, R)
2: for all node n P g.V do
3: crossrefsÐ @r P R | pces “ any element P n and t “ has crossreference toq
4: for all crossref c P crossrefs do
5: dÐ node containing class of dependency
6: if  D path n´ d then
7: eÐ new edge pn, d
8: e.T Ð rcrossref s
9: g.E Ð g.E Y e

10: else
11: add requires constraints from n to d
12: end if
13: end for
14: end for
15: end function

out of their class, were merged with other classes. Nodes that were merged are shown with a thick
border for convenience.

5.5.11 Adding Cross-references
The last step in populating the DAG is to add cross-reference information. Cross-references form
additional dependency information. If a method takes as a parameter (or returns) an instance of
another class, the method depends on this other class. Furthermore, checked exceptions form a
dependency as well since the caller needs to handle them. Therefore, this information needs to be
added to the graph to capture these dependencies.

Algorithm 5.13 provides the algorithm for the addCrossReferences function. Before
adding a cross-reference, it needs to be ensured that this does not add a cycle to the graph, i.e.,
there is no path in the opposite direction yet, from the dependee to the source. This can happen
especially if hypotheses H1 and H3 do not hold. This means that unused elements are not removed
and such operations are also not pulled out because no decision can be made about them. In addi-
tion, up to this point the existing path in the inverse direction can only be of type inheritance or
containment. We consider them to be more important than crossref edges (we discuss this in more
detail later in Subsection 5.5.12.5). Therefore, instead of avoiding a cycle by merging the nodes,
we add a requires cross-tree constraint to ensure that the required type will still be available for use
at the end.

Figure 5.9 shows the result after adding all cross-reference edges to the graph. The additional
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Figure 5.9: Intermediate result after adding cross-reference edges (added crossref edges are high-
lighted with thick stroke)
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crossref edges are highlighted with a thick stroke.

5.5.12 Graph Simplification
After the cross-references are added all dependency links are present in the graph. While we made
sure that there are no dependency cycles in the graph, at this point, some nodes may have more
than one outgoing edge. Since the ultimate goal is to create a feature model, the last phase of
the algorithm performs a series of simplification steps (i.e., remove nodes or edges) in order to
convert the DAG into a tree. However, a node or edge can only be removed if the integrity of the
API is maintained, i.e., every correct feature selection on the resulting feature model produces the
corresponding subset of the API related to that feature. In the following subsections we discuss the
simplifications and the reasons for why they can be performed. And as a last resort, an edge from
f1 to f2 can be replaced with a requires cross-tree constraint for the feature model indicating that
when selecting f1 also f2 needs to be selected.

5.5.12.1 Merging Mandatory API Elements

Often there are API elements that are used in every usage scenario. Without them, correct use of
the framework is not possible. As a result, they are used in every example. Due to the insertion
of package nodes when connecting all hierarchies (see Section 5.5.9), these API elements are cur-
rently not in the root node. In a feature model, the root feature is always going to be selected. Since
the API elements always need to be used, we can ensure the availability of those API elements by
merging the node containing those elements with the current root using the mergeNodes func-
tion. In our example, the node with IDrawingSurface and IWindow is used in all examples
and hence merged with the root node.

5.5.12.2 Merging Equivalent Groups

It is possible that there exist two nodes that group the same children, i.e., both have incoming edges
originating from the same nodes. This means that all children have at least two outgoing edges
which need to be dealt with. In such a case, we merge both nodes. For example, in our example
(see Figure 5.9) the node for the class EventQueue and the node for package handler group
the same children and are therefore merged as a result.

5.5.12.3 Merging Utility Nodes

There can exist classes that are used by several other classes and potentially do not present a
user-perceived feature on their own. Instead, they can represent a utility that needs to be used. To
detect this, we consider nodes across the complete graph. A requirement that exists is that all nodes
with an outgoing edge to such a node need to have at least one other outgoing edge. This means
that these edges need to be simplified in order to reach our goal of retrieving a tree at the end.
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A possible way to deal with this is to replace them with requires constraints. However, this can
potentially lead to a large number of constraints. We can however take advantage of the benefit of
CORE and its composition. As explained in sections 2.4.3 and 2.5, the composition operator of
structural views (class diagram) in the design models will merge classes. Therefore, an alternative
is to copy the contents of the node into each referencing node. We therefore relax the property for
those elements for apipfq that an API element e only belongs to one feature to allow sharing the
same code elements among features.

We define a utility node as such if it satisfies the following properties:

• the node is not within a hierarchy, i.e., it does not have any outgoing edges with type inheri-
tance,

• the nodes pointing to the node have more than one outgoing edge,

• the edges of nodes pointing to the node are

– only of type crossref, or

– only of type grouping, and

• the union of usage in examples of the nodes pointing to the node matches the example usage
of the node.

If these properties are satisfied, the contents of the node can be copied into each of the nodes
pointing to it, and the node be removed at the end. For example, in our example (intermediate result
prior to graph simplification shown in Figure 5.9), the node for class Color is cross-referenced
by various other nodes whose classes contain operations requiring a Color instance.

5.5.12.4 Transitive Reduction

Based on feature model configurations, if a feature f is selected, it means that all its ancestors are
selected as well. That means that if there is an additional edge from a feature to its indirect ancestor,
this edge can be removed by performing transitive reduction. As a result, all redundant edges are
removed from the graph. The previous simplification steps merged nodes which can change the
edges in the DAG. Therefore, transitive reduction is performed after those steps. This also ensures
that any edge to the node with mandatory elements (which is the root node) is removed for nodes
with multiple outgoing edges, since its elements are always available.

Figure 5.10 shows the intermediate result after these simplification steps are performed. The
IDrawingSurface and IWindow interfaces were merged into the root because they are manda-
tory. The handler package node and node for EventQueue were merged as equivalent groups.
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Figure 5.10: Intermediate result after the first part of graph simplification (updated nodes high-
lighted with a thick stroke, edges with a dashed line still need to be simplified)
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The node for Color was identified as a utility node and therefore copied into each referencing
node. During transitive reduction the grouping edges from the nodes for the two handlers to the
root were removed. There is still one node (for Text and Font) with more than one outgoing
edge. Its outgoing edges are highlighted with a dashed line and further simplification is required.

5.5.12.5 Edge Simplification

Until this point several simplification steps have been performed. The node with mandatory API
elements was merged into the root node. Nodes grouping the same nodes as well as utility nodes
were merged. And finally, transitive reduction removed redundant edges. However, there can still
exist nodes with multiple outgoing edges. The last information we can use for simplification is the
types of the edges. We can use this information to decide which edge to remove. However, as noted
at the beginning of this subsection, we need to ensure that the integrity of the API is maintained.
This means that in certain cases, the removal of an edge requires the addition of a corresponding
requires cross-tree constraint.

Our intuition is that the edge types have different priority. For instance, the edge type group-
ing represents a potential grouping in the case that a node is not associated with any other nodes.
As such, if there are edges of other types, the grouping edge can be removed. The edge type in-
heritance represents a relationship between the sub-class and its superclass. Because inheritance is
usually used when there is more than one sub-class, in accordance with our common hypothesis 5
(see Section 5.4), the super-class provides a grouping of alternate choices among sub-classes. This
should be reflected in the final feature model. Therefore, the inheritance relationship has the high-
est priority. Containment and crossref share similar characteristics. Both require the depending
type to be available. Containment reflects an edge due to the fact that an operation of a class was
used less than the class itself. However, a crossref edge only exists if the type that is depended on
is used less than the node itself (i.e., they were not used in the same examples and therefore not
merged). Therefore, we regard containment as a higher priority.

To summarize, the priority ordering of edge types to help the decision on which edge to remove
in descending order of priority is:

1. inheritance,

2. containment,

3. crossref,

4. grouping.

In order to deal with the remaining nodes that have multiple outgoing edges, their edge types are
compared with each other pair-wise and the edge with lower priority is removed. Removing an
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Figure 5.11: Final result after the edge simplification (root shown in grey)

edge with type grouping does not remove any dependency information and no cross-tree constraint
is required. In all other cases, i.e., when a containment or crossref edge is removed, a requires
cross-tree constraint needs to be added for the removed edge to maintain the integrity of the API.
In the case that two edges have the same type, the edge with the lower amount of this type is
removed. If they have the same amount of this type, one of the edges is chosen randomly to be
removed.

Figure 5.11 shows the final result after edge simplification. The grouping type edge to the
image package node was removed from the Text and Font node. Because it is a package node, no
cross-tree constraint is required to compensate for removing the edge.

It is possible that as a result of the simplification steps the graph contains nodes representing
packages that do not group any nodes anymore, or only group one child. Therefore, such a node
can be removed using the removeNode function. In our example (see Figure 5.10), this is the
case with the window and image package nodes.
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5.5.12.6 Reducing the Feature Model size

Lastly, an optional simplification that can be provided to the user is the ability to merge pulled out
operations nodes back up to their parent if they weren’t merged with any other nodes based on the
usage. Especially for frameworks with a large API, it is unrealistic to provide examples that make
use of all operations and with all possible combinations. Therefore, the probability is high that
at the end there exist several nodes with only operations that were pulled out but never merged.
For example, in our example (see Figure 5.11), the operations scale and crop of Image were
pulled out, but not merged.

However, the user can also perform this manually after retrieving the determined feature model
as this depends on the desired granularity.

5.5.13 Converting to a Feature Model
At this point the DAG takes the form of a directed rooted tree and can be converted—along with the
cross-tree constraints—into a feature model. The remaining step is to determine the relationships
between the parent features and their children. By default, all children are optional. However,
based on common hypothesis 5, parent nodes with an abstract super-class and empty nodes need
to have at least an OR relationship with its children to allow valid feature selections. Based on
the graph simplification, the children represent the sub-classes. For example, this is the case in
our example for the IWindow Group (as an empty grouping node) and the BaseWindow (as an
abstract super-class) nodes (see Figure 5.11). If hypothesis H1a holds, it allows the algorithm to
determine whether the children are in an XOR-relationship. In our example, the children of the
IWindow Group are in an XOR-relationship, whereas the children of BaseWindow remain in the
OR-relationship. In certain cases, e.g., if a parent node containing an abstract super-class has more
children than solely the sub-classes, an intermediary node needs to be introduced to group the
sub-classes. The intermediary node then becomes mandatory, and the other children optional. The
same applies to the IWindow Group node in our example, because it is used in the same examples
as its parent.

Based on hypotheses H1a and H1b, for the remaining nodes it can be checked based on the
example usage whether the children should be in an OR-relationship and potentially even an XOR-
relationship. For instance, the children of the node representing the handler package and the
EventQueue class show that whenever the parent is used, at least one of its children is used as
well. Additionally, the example usage shows that both handlers can be used together. As a result,
the relationship becomes OR. The resulting feature model for our example is shown in Figure 5.12.

As a reminder to the reader, the automated concernification algorithm provides the identifica-
tion of user-relevant features of the framework (step 1a in Section 3.4) and organizes them in a
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Figure 5.12: The Resulting Feature Model for the Running Example

feature model along with their relationships (step 1b). In addition, we know as a result of perform-
ing automated concernification which elements of the framework’s API belong to which feature
(step 2a). In addition, we need to group those API elements within a design realization model that
is associated with the feature (step 2b). For step 2c, determining whether an API element belongs
to the customization or usage interface, most API elements belong to the usage interface. Any cus-
tomized framework class that was found in the examples needs to be converted to a partial class
in the design realization model. Furthermore, any methods that are implemented in the customized
framework class need to have a corresponding partial operation. The same applies to each interface.
In our example, both handler interfaces need to be implemented by the user and as such a partial
class implementing the respective interface needs to be added to the design realization model for
each feature.

5.6 Implementation
We implemented the algorithm in order to be able to perform automated concernification automat-
ically. This serves as a validation that the algorithm does indeed work in practice, especially with
frameworks of larger size. We describe the different components and report on the performance
of automated concernification. The algorithm implementation is built by reusing backend compo-
nents of the TouchCORE tool, i.e., the metamodels and code providing CORE and RAM. To fully
support concernification at the tool level, several enhancements had to be made to the TouchCORE
tool. We describe these first before outlining the components of the algorithm implementation.

5.6.1 Supporting Concernification in TouchCORE
Prior to the research described in this thesis, TouchCORE initially only supported structural design
modelling and structural composition with class diagrams. Behavioural design modelling and be-
havioural composition using sequence diagrams was added to TouchCORE [2, 97–99, 101]. This

97



5.6 Implementation

allows a modeller to reuse a concernified framework and define structure and behaviour using it
at the modelling level. The following subsections describe the enhancements made to the Touch-
CORE tool in detail.

5.6.1.1 Support for Importing Implementation Classes into a Design Model

The classes and methods of a framework are already defined and implemented in code. These
code elements should therefore not be re-defined at the modelling level. Instead, their function-
ality should nevertheless be accessible from within design models. To this aim, TouchCORE was
extended to allow importing existing classes—called implementation classes—into a model [99].

To distinguish regular classes and implementation classes, the metamodel of class diagrams in
RAM was extended with a new classifier type ImplementationClass that has a fully qualified
name in addition to its simple name. This also allows abstracting from a specific programming lan-
guage. Many programming languages use generics. To support genericity, an Implementation-
Class can have TypeParameters that have a name and can have a generic type that restricts
the possible types that are used. A TypeParameter is itself a Type since it might be used as a
return or parameter type of an operation. Furthermore, an implementation class can have operations
and attributes (i.e., public constants) like a regular class. It can, however, not have any outgoing
associations. Associations are restricted to be unidirectional originating from a regular class to an
implementation class.

An undergraduate student implemented an importer for Java that allows a designer to load
classes from the Java Platform or an external JAR file. Once a class is imported, the user can
then import specific operations of the class. By not importing the complete class with all its public
attributes and operations, the user is not overloaded. The user only imports and sees those elements
that are actually used. To import an implementation class in TouchCORE, the user only needs to
specify the JAR file of the framework and can then proceed to import the desired classes and
operations he intends to use. To import a class from the Java Platform, no JAR file needs to be
specifically loaded. In case the user imports an operation with a return or parameter type that refers
to an implementation class that has not been imported yet, TouchCORE automatically imports and
adds them to the model.

5.6.1.2 Support for Code Generation

In MDE, models are not used for documentation only, but are meant to be refined and transformed
until they can be executed, or code can be generated from them. Following this philosophy, Touch-
CORE was extended with a code generator which generates Java code from design models [118].
For each class in the design class model, a corresponding Java class is generated along with its
structure (attributes and methods). The method’s behaviour is generated from the sequence dia-
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grams.
This allows a modeller to use a concernified framework at the modelling level and then generate

code for the design. No code is generated for implementation classes. The code already exists and
the existing reusable artefact can be included into the build path via traditional means. To this
effect, any regular class imports any corresponding implementation class when referencing it by
making use of it in its structure or behaviour.

The code generator is implemented using Acceleo [43], an open source code generator envi-
ronment. It provides a template-based language to perform model-to-text (M2T) transformations.

5.6.1.3 Support for Traceability

Traceability support is crucial for tools that deal with separation of concerns to understand the
detailed interactions between concerns. In the context of concernification, it is essential to un-
derstand which feature certain design elements relate to in a composed model of a framework’s
concern interface. We extended TouchCORE with support for traceability [103].

In the CORE metamodel, a new super-class CORETraceableElement was introduced that
makes it possible to mark elements as traceable. For those models that represent a composed one,
COREModel now contains a list of woven models. A COREWovenModel refers to the original
model that was woven into the model. In addition, the woven model contains a mapping of ele-
ments that were woven. It maps from the source model element of the original model to the target
model element in the composed model. Woven models are hierarchical in order to be able to main-
tain traceability of models that itself were composed with another model (i.e., by reusing another
concern).

The weaver was extended to support the creation of the new data structure. Weaving is done
in pairs of two models. At the end of weaving, in the post-processing phase, a new instance of
COREWovenModel is created and its name initialized to the model that was woven. This is done
to obtain the name in case the original model cannot be accessed, which is also set at this point. The
mapping of woven elements is established based on the internal weaving information the weaver
maintains during the weaving process [101].

In the GUI of TouchCORE, whenever a model contains information about other models that
were woven into it, a tracing view is shown that lists the woven models by name. To see which
elements were woven from a certain model, the user can select one or more entries and the tool
highlights the corresponding woven elements in different colours. This allows the user to under-
stand where certain elements came from.
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Figure 5.13: Overview of the Main Components of the Automated Concernification Implementa-
tion and the Flow of Data

5.6.2 Overview
Figure 5.13 shows the overview of the components of the implementation as well as their inputs
and outputs. The artefacts required to concernify a framework are the code of the framework and
the examples showcasing the use of the framework’s API. The framework’s code must be provided
in form of a packaged JAR file containing the compiled source code. The examples are provided
as source code in a ZIP archive.

There are three main components. The Importer is responsible for importing the classes and
their elements. The Example Parser parses the example source code to detect the API usage, and
the Concernifier performs the graph concernification to produce at the end a concern with the
feature model and the realization design models for each feature. In addition, we implemented
a graph visualizer which visualizes the DAG data structure that is used in the concernifier. This
makes it possible to inspect the manipulated data structure in between steps.

5.6.3 Importer
The Importer processes one or more JAR files of a framework to extract the framework’s API. To
do this, a RAM StructuralView is created representing the class diagram with the classes and their
attributes and operations as well as the hierarchy between classes. The use of class diagrams in
RAM abstracts away from the programming language the framework is written in. Additional im-
porters can therefore be implemented to provide extraction of frameworks written in other object-
oriented programming languages.

In order to gather all classes of the framework, the Reflections library [94] is used. The Java
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Reflection API makes it possible to extract information about all the classes of the framework
and their properties and create the corresponding classes in RAM. Besides public classes, also
non-public classes which have public subclasses are extracted. Methods with protected and public
visibility are extracted as well. Overriding methods are ignored, since the overridden method in the
superclass is the one that is relevant. The only exception is when an overriding method increases
the visibility of the method, allowing instances of the subclass to call a method that is otherwise
hidden. For class fields, only those that are public are extracted. Public fields are commonly used
for constants. RAM currently does not support the declaration of which exception is thrown by an
operation. The exception class itself is imported and added to the structural view, but in addition,
the Importer stores in an additional data structure the information of which operation throws which
exception.

5.6.4 Example Parser
The Example Parser parses each source file from the examples ZIP archive and determines the
usage of all framework elements within the given example file. To parse the source files, the
ASTParser provided by the Eclipse JDT [42] (the Java Development Toolkit used for Java pro-
gramming in Eclipse) is used. The Example Parser determines a mapping of the classes to their
used elements. Furthermore, it determines those classes from the framework that were customized
by the example as well as their overridden methods, if any. The framework and example package
names are used to distinguish classes belonging to the framework and examples.

It is common that an example consists of many (auxiliary) classes that together describe an
example. Our algorithm assumes that an example has one main class that represents the example.
In the case of a simple example this is the class that defines the main method. The list of entry
points (examples) is provided to the Example Parser. The usage of an example is the union of
usages of each class contributing to an example.

5.6.5 Concernifier
The Concernifier is responsible for performing the DAG concernification algorithm. It takes as
input the results from the Importer and Example Parser as well as the options containing the
settings for the hypotheses. It implements the algorithm definition as outlined in Section 5.5. The
DAG data structure is implemented on top of the JGraphT library [79]. It allows one to create
custom node and edge types. Furthermore, JGraphT provides out-of-the-box utilities for graph
traversal, transitive reduction and cycle detection which we require for concernification.

At the end, the final DAG is converted into a concern with a feature model based on the DAG
as well as realization design models for each non-empty node. Each design model contains the API
elements that were determined to belong to the corresponding feature.
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Figure 5.14: Screenshot of the Visualizer component visualizing the final graph after concernifying
the Workflow concern framework

5.6.6 Visualizer
To visualize the final DAG or intermediate results we implemented the Visualizer component,
which was helpful mostly during the implementation and debugging of the concernification algo-
rithm implementation. JGraphT provides an adapter class JGraphXAdapter allowing the graph
to be visualized by JGraphX [55], a graph visualization library for Swing.

Due to the fact that our edges show dependency links, the root is the node with no outgoing
edges. JGraphX provides a hierarchical layout with the option to configure the orientation in which
it is layed out, however, due to a bug with our required orientation (south) the graph is drawn off-
screen. We fixed this in the implementation of the corresponding mxHierarchicalLayout

class. Figure 5.14 shows a screenshot of the Visualizer displaying the resulting graph after con-
cernifying the Workflow concern framework.

5.6.7 Performance
We report on the performance of the automated concernification prototype implementation. Specif-
ically, we report on the performance of the individual components and provide metrics on different
properties. We provide the average execution time we measured of running the task 110 times and
discarding the first 10 runs to account for code loading and initialization when starting the Java
virtual machine. We report on performance of processing the Minueto framework which we dis-
cussed in Section 3.5. Furthermore, we report on the Workflow concern, a workflow engine for
reactive systems, and the Android SDK as a bigger framework than the other two. Both Workflow
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Table 5.1: Performance Metrics of the Importer

Framework Relevant Classes
(total)

Visible Elements
(total)

Avg. Elements
per Class

Avg. Importer
time (ms)

Workflow 18 (28) 44 (48) 2.44 10

Minueto 41 (60) 418 (466) 10.19 18

Android 3100 (3577) 47559 (50007) 15.34 1158

Table 5.2: Performance Metrics of the ExampleParser

Framework Examples Files LOC Avg. ExampleParser time (ms)

Workflow 8 11 436 228

Minueto 30 59 4388 1267

Android Notifications 12 83 7143 3630

and Android are used for validation and will be described and discussed in Chapter 6 (Workflow
in Section 6.1 and Android in Section 6.3).

Table 5.1 provides the metrics of importing the JAR file of a framework and producing the
corresponding structural view for its API. The number of visible classes includes those that are
not public but have public sub-types since they potentially provide a shared implementation. The
number of elements include public fields and public or protected methods.

Table 5.2 shows the metrics of extracting the usage of the framework API in the example source
code files. Examples might share implementations of common functionality or utilities. Hence, the
number of files is greater than the number of (runnable) examples. The execution times of the
ExampleParser show that parsing source code takes considerably longer than analyzing the binary
code (as is done by the Importer).

Table 5.3 lists the performance of the main concernification algorithm. We show in addition
the number of nodes and edges in the graph after the individual phases (see Section 5.5.2). Phase
1 concludes after initializing the individual hierarchy trees, phase 2 is finished after populating the
DAG with all available dependency information, and phase 3 ends after the DAG simplification.
At this point, the DAG is a tree with n´ 1 edges.
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Table 5.3: Performance Metrics of the Concernifier

Framework Nodes
(1)

Edges
(1)

Nodes
(2)

Edges
(2)

Nodes
(3)

Avg. Concernifier
time (ms)

Workflow 18 13 12 17 11 3

Minueto 41 13 49 79 21 10

Android (notifications) 2984 1335 48 62 15 73

Android 2984 1335 3123 7665 2795 3522

5.7 Summary
This chapter described in detail the algorithm for automated concernification. The algorithm is
designed based on the guidelines we determined and confirmed with the developers of Minueto.
The most important inputs to the algorithm are the relationships between API elements and the
examples showcasing the use of a framework’s API. The usefulness of the result highly depends
on the quality of the examples. In the best case, there is at least one example exclusively showcasing
one feature. However, this is unrealistic since examples often showcase many features at once. In
combination with the API structure and dependency information available from the API we can
mitigate this. We established hypotheses about the quality of the examples that can be enabled or
disabled that then influence the steps performed in the algorithm.

The algorithm is based on a DAG data structure where a node represents a potential feature.
Edges represent dependency information (such as inheritance). The algorithm is divided into three
main phases. In the first phase, the DAG is populated with individual trees for all inheritance
hierarchies of the framework’s API. Operations which are used in less examples than their class
are pulled out since they could potentially belong to another feature. The second phase connects
the individual hierarchy trees by considering the package structure and merges those nodes with
the same example usage. At this point, the DAG has one root. In addition, the DAG is populated
with cross-references. The goal of the algorithm is to produce a tree that represents the feature
model. Therefore, in the third phase, simplification of the DAG is performed. The simplification
steps ensure that the integrity of the framework API is maintained.

The simplification decision might involve removing an edge. The decision which edge to re-
move is based on a priority ordering of the edge types we use (e.g., inheritance is considered more
important than a structural grouping). This decision might not always be the right one depending
on the specific case. However, we know that there is no perfect solution for our algorithm, because
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there exists no unique feature model that needs to be found. Rather, features can be organized in
different ways, but in the end the possible configurations remain the same. Furthermore, the way
in which features are organized is subject to the view of the designer. As such, the same features
might be organized into different feature models by different people. Finally, whether a feature
should be decomposed further into sub-features sometimes also depends on the desired level of
detail. For example, depending on the size of the API, splitting the methods of a class into separate
features could result in large feature models. This increases the cognitive effort a user has to make,
which can make it more difficult to make an appropriate feature selection. As such, our algorithm
provides the option to minimize the features, i.e., features of methods that were not merged are
ultimately moved up into the feature corresponding to the method’s class.

In general, the idea is that our algorithm provides an initial concern interface for a framework.
The developer as the domain expert can then further fine-tune the feature model and make adjust-
ments as is seen fit. For this, proper tool support is essential to be able to see the features and
their corresponding API and be able to quickly rearrange features or move API elements around
into different features. Additionally, such a tool needs to ensure that the integrity of the API is
maintained and introduce cross-tree constraints if needed. However, cross-tree constraints should
be minimized as they are more difficult to understand and, for example, negatively impact the
performance of impact model evaluations.

To ensure that the algorithm produces accurate results, the next chapter will validate it in two
ways. First, by ensuring that the synthesized concern interface for a known concern produces an
accurate result, and its examples can be designed with only the API subset related to the features
the example(s) showcases. Similarly, we can evaluate the accuracy of the result for Minueto based
on the validation result from Chapter 4. Second, to ensure that automated concernification provides
an accurate result for a larger framework that is widely used, the next chapter will also describe a
study using the Android SDK.
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Automated Concernification Validation

The previous chapter defined the algorithm to perform automated concernification. Given runnable
examples that showcase how to use a framework, the API of a framework can be concernified. In
order to verify the accuracy of the results the automated concernification produces, we need to
know the feature model of a framework to compare the result to. In Chapter 4 we conducted
a study with the Minueto developers to validate our own Minueto feature model and determine
the developers own feature models. In addition, there is the Workflow concern which has been
developed as a concern first, i.e., a feature model along with design realization models for each
feature already exists.

In this chapter we start by evaluating the Workflow concern in Section 6.1. As it was conceived
as a concern, we know with 100% certainty what the features are. This allows us to create examples
that showcase the use of each feature individually, as well as examples that illustrate the use of
the features in combination. In the first section of this chapter, we therefore run the automated
concernification algorithm on code generated from the Workflow concern to extract a feature model.
We then compare the extracted feature model with the known feature model and report on the
accuracy of the determined features as well as the API and its integrity, i.e., whether the examples
have access to the subset of the API related to the features. In Section 6.2 we evaluate the accuracy
of the feature detection on Minueto. We compare the result of automatic concernification with our
validated feature model from Chapter 4.

Finally, in Section 6.3 we perform automated concernification on a third framework—the An-
droid Notifications API of the Android SDK—and conduct a user study to gather feedback on the
results. We report on the feedback and analysis of the data we gathered. This chapter concludes
with a summary in Section 6.4.
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Workflow

Conditional Execution Conditional SynchronizationI/O

Input OutputParallel Execution Synchronization

Concurrent Branching

Figure 6.1: Workflow Feature Model

6.1 Evaluation of the Workflow Concern
The Workflow concern provides a workflow engine for reactive systems. It defines a workflow ex-
ecutor and different kinds of nodes to describe a workflow. Optional features contribute additional
functionality for branching, concurrency, waiting, and input and output handling. The Workflow
concern models the workflow engine of the system, i.e., it does not deal with the client side inter-
acting with the system.

The Workflow feature model is shown in Figure 6.1. It contains the known features and their
relationships. There are no mutually exclusive features.

The Workflow concern was conceived as a concern from the beginning. Therefore, we know
the true features of the Workflow concern. In addition, we know the API for each feature. We
can therefore use the Workflow concern to evaluate the accuracy of the automated concernification
algorithm. To be able to perform automated concernification, the complete framework API and
examples showcasing the use of the API are required. As such, we selected all features and used
the resulting composed model generated by the weaver to generate code. This code represents the
API of the entire Workflow framework. The composed model has a customization interface. When
generating code, any partial class or method is marked as abstract to require user implementation1.

We then created examples showcasing the use of the API and its different features. We created
an example for the root feature, each leaf feature, and one showcasing the use of all features in
combination. In total, there are 8 examples which are as follows:

1. SimpleWorkflow: Showcases a simple workflow using only the API provided by the root
feature. The simple workflow consists of a start node, a sequence of responsibilities, and an
end node.

2. ParallelWorkflow: Showcases a workflow using parallel execution (and fork) provided by
the ParallelExecution feature.

1Constructors in Java can, however, not be abstract.
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3. SynchronizedWorkflow: Showcases a workflow synchronizing two paths (and join) pro-
vided by the Synchronization feature.

4. ConditionalExecutionWorkflow: Showcases a workflow conditionally forking (or fork)
provided by the ConditionalExecution feature.

5. ConditionalSynchronizationWorkflow: Showcases a workflow conditionally synchroniz-
ing a path (waiting place) provided by the ConditionalSynchronization feature.

6. InputWorkflow: Showcases a workflow handling input provided by the Input feature.

7. OutputWorkflow: Showcases a workflow sending output provided by the Output feature.

8. FullWorkflow: Showcases a workflow making use of all features together in combination.

Based on the knowledge of what the examples showcase and the API they make use of, we set
the options of the algorithm such that all hypotheses hold. Performing automated concernification
using the framework and the example code allows us to compare the original feature model with
the automatically determined one. In summary, it allows us to evaluate whether:

1. all original features were detected by the algorithm, the API elements were assigned to the
same feature than in the original, and

2. the API elements constituting the customization interface in the original were detected.

In this section we evaluate these three points by comparing the original Workflow concern (Worig)
and the automatically concernified Workflow (Wac) to determine whether using examples showcas-
ing the features of a framework automated concernification provides an accurate concern interface
of the framework. The designer should only need to make minimal “cosmetic” adjustments, if any.

6.1.1 Accuracy of Feature Detection
Figure 6.2 shows the two feature models of Workflow, the original feature model (Worig) at the top
and the feature model obtained after performing automated concernification (Wac) on the bottom.
The names of the features in Wac were manually determined and mostly reflect the names of the
classes that are contained in the API of the respective features.

In addition, to better understand the differences between the two feature models, the resulting
graph after performing automated concernification including the API elements is also shown in
Figure 6.3.

There are three main differences. First, there exist two additional features in Wac. The first
feature—named Control Flow and Synchronization—contains a single operation from the abstract
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Figure 6.2: Feature Models of Worig (top) and Wac (bottom)
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class ControlFlowNode which is required to be used when the next node after a control flow
node is a SynchronizationNode. This means this method is only required if the features
Control Flow and Synchronization are used. In Worig this is modelled as a feature interaction
between Synchronization and Parallel Execution/Conditional Execution. The feature interaction
realization model that realizes the respective features (see Section 2.4.5) introduce this method.
However, our algorithm does not detect this, and it is left to the user to move those API elements
into such a realization model. The second feature—named Parallel Synchronization—contains the
constructor of SynchronizationNode. It was pulled out of the class because it is used in less
examples than the class itself. SynchronizationNode is sub-classed by Conditional-

SynchronizationNode, therefore, when using the latter the former is also used. This is an
improvement over the original feature model where selecting only Conditional Synchronization
also gives access to the constructor of SynchronizationNode.

The third difference relates to the groupings of the features. In Worig the grouping feature Con-
current Branching is a logical grouping, i.e., it does not provide any realization model. The mod-
eller of Workflow chose to group those features related to concurrent branching of workflows. Our
algorithm favours inheritance relationships. The realization model of Conditional Synchronization
extends the realization model of Synchronization. This is in order for the former to extend the
SynchronizationNode class of the latter. Therefore, due to the inheritance relationship, Con-
ditional Synchronization is a sub-feature of Synchronization. While the modeller of Worig placed
importance of showing concurrent branching features together, the resulting feature model of Wac

shows features for branching and synchronization together.

6.1.2 Accuracy of API Element Assignment
To ensure that API elements are actually assigned to the correct feature, we compare the usage
interface of each feature of Worig with that of the respective feature of Wac. This answers the
question whether the integrity of the API is maintained.

There are two main differences. First, the method WorkflowUtility.getWorkflow-

Utility() is located in the root feature Workflow in Worig. This is because the root feature
uses this method internally, whereas it needs to be called by the user when using Conditional
Execution/Synchronization. In Wac this method was identified as a utility node and copied into the
features where it is needed (Conditional Execution and Conditional Synchronization). As a result,
this method is in the usage interface in those two features where the user actually needs to use it.

The second difference relates to the fact that the Workflow concern reuses another concern
(Command realizing the command pattern [44]) which requires the execute() method of a
command to be public because it is a callback method. Both Input and Output features provide
a concrete RemoteCommand sub-class which requires the execute() method to be imple-
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Table 6.1: API Metrics based on Feature Selection of Wac

Example Feature Selection2 Classes Methods Percentage of
Complete API

SimpleWorkflow Workflow 8 10 38%

ParallelWorkflow Parallel Execution 10 12 47%

SynchronizedWorkflow Parallel
Synchronization

9 12 45%

ConditionalExecution-
Workflow

Conditional
Execution

11 14 53%

Conditional-
Synchronization-

Workflow

Conditional
Synchronization

11 15 55%

InputWorkflow Input 13 14 57%

OutputWorkflow Output 11 11 47%

FullWorkflow Parallel Execution,
Conditional

Execution, Parallel
Synchronization,

Conditional
Synchronization,

Input, Output

21 25 98%3

mented. They are callback methods meaning that the user does not explicitly call them. However,
because the user needs to provide application-specific behaviour, they are part of the customization
interface. These two methods were removed during automated concernification as we specified hy-
pothesis H3 (see Section 5.4) to hold. This shows an additional benefit of concern interfaces: if the
concern interface is used instead of the Java API, public methods coming from frameworks that
the framework reuses would be excluded in the usage interface, therefore reducing the cognitive
effort required by the user.

In summary, of the used API, 98% of API elements were assigned to the correct feature. Ta-

2Ancestors of those features were omitted for brevity as they will be selected automatically.
3Due to the missing method in ControlFlowNode
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ble 6.1 lists the number of API elements that are part of the usage interface of the generated API for
each feature selection from Wac. Ancestors of those features were omitted for brevity as they will
be selected automatically. This shows the reduction in the size of the API, reducing the cognitive
effort required by the user.

In addition, we also evaluated whether the code for each example has access to the required
API when selecting only the features of Wac that the example showcases. For each example we
composed a tailored version of Workflow (Wac) based on the feature selection. We then compared
for each example whether all API elements used by the example are available in the customized
version. In summary, all API elements are available with the exception of one method used in
the FullWorkflow example. The method in question is ControlFlowNode.addNext-
Node(String, SynchronizationNode, String) which is located in the additional
feature ControlFlowNode and Synchronization. Worig does not have this feature and therefore we
did not select it to test the FullWorkflow example. As discussed above, this method needs to
be provided by a feature interaction model and therefore would not be a distinct feature.

6.1.3 Accuracy of Customization Interface
To evaluate whether all API elements were detected that need to be part of the customization
interface, we also compared the customization interface of Worig and Wac. Worig provides in to-
tal three partial classes. CustomizableNode (with a partial method execute()) in the root
feature Workflow, CustomizableInputData (with a partial constructor Customizable-
InputData(String, String)) in Input, and CustomizableOutputData in Output.
Our concernification algorithm added all five elements (three classes and two methods) to the cus-
tomization interface of the respective features. The only difference in Wac consists of an additional
abstract class in the inheritance hierarchy of the API. The presence of this class is due to the way
the code was generated for Worig. Because there are no partial elements in Java, the partial methods
and classes were generated as abstract, therefore requiring the user to provide implementations for
those elements.

6.2 Evaluation of Feature Model Accuracy for Minueto
To further evaluate the accuracy of the detected features and their organization within the feature
model by automated concernification, we also performed an evaluation with Minueto. In Chap-
ter 3 we introduced our own feature model of Minueto which we validated with the developers of
Minueto (see Chapter 4). In this section we use our corrected feature model of Minueto (MI , see
Figure 4.9 on page 58) to compare it with the automatically determined one (Mac).

Along with the Minueto framework the developers provide 31 examples that showcase how
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Figure 6.4: Minueto Feature Models of MI (top) and Mac (bottom)

to use the API. While working with the examples, we identified a problem with them based on
the knowledge we gained from familiarizing ourselves with the framework and interviewing the
developers (see Chapter 4). Two examples (HelloWorld and TextDemo) instantiate and make
calls to MinuetoEventQueue without using this instance in combination with a respective
handler (i.e., the MinuetoEventQueue instance is never passed to any method to register it
for handling specific events). As a result, the call to hasNext() always returns false and the
body of the loop is never executed (thus the handle() method is never invoked). In other words,
the instantiation of the MinuetoEventQueue is useless in those two examples. This violates
our hypothesis 4 stating that the examples make correct use of the framework’s API. To address
this, we removed the use of MinuetoEventQueue from the HelloWorld and TextDemo

examples.
While the examples do not use the full API, i.e., every single method of each class, the de-

velopers created these examples showcasing the features of Minueto. We therefore enabled all
hypotheses to hold with the exception of hypothesis H1a because not all possible combinations are
covered by the examples.

The feature model of MI is re-shown for convenience on the top of Figure 6.4. The feature
model obtained after running the automated concernification algorithm contains 45 features. This
high number results from several methods being pulled out of their containing class. Reducing the
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size of the feature model by merging those operation nodes back to the parent (where the class is
located) that were not merged with any other node results in 24 features. The minimized feature
model is shown on the bottom of Figure 6.4. The names of the features reflect the names of the
classes or interfaces (excluding the Minueto prefix), or the names of the operations the features
provide.

We first discuss in detail the higher-level groupings of the feature model and then focus in on
each group to compare them with each other.

Grouping Features While MI has a grouping feature called Drawing, Mac does not have it.
However, this represents only a logical grouping for all drawing related features. In Mac, the win-
dow types and graphical elements are grouped directly under the root feature. Both feature models
contain a grouping feature for handling different events (Interactive in MI and Handlers in Mac).
Furthermore, MI groups Timer and OS Detection under a Utilities group. Mac on the other hand
has StopWatch and Options and Tool Operations directly connected to the root feature. The latter
feature not only contains the method for OS detection from the MinuetoTool class, but also the
methods of MinuetoOptions to enable alpha transparency and hardware acceleration. These
are separate features in MI .

Lastly, Mac contains a dedicated feature for Color. The feature has two sub-features with meth-
ods of MinuetoDrawingSurface that require the MinuetoColor class. Due to transitive
reduction their edge to the root feature (containing the class) was removed. Besides these two
methods, several methods provided by the Image feature and its children (with the exception of
ImageFile) require the MinuetoColor class as well. This shows that it could be a utility class
and the designer can make this adjustment at the end.

Types of Window Surfaces Both feature models have a feature group for the types of windows
that can be used (Surface in MI and Window Types in Mac). While the children of Mac are in an
OR-relationship, those of MI are in an XOR-relationship. Since hypothesis H1a does not hold,
this was not detected. If this hypothesis is set to hold, the algorithm determines that the children of
Window Types are in an XOR-relationship because they are not used together.

The feature configuration further does not allow MinuetoFullscreen to be used without
MinuetoFrame because it is located in the Base Window and Frame feature. This is due to the ex-
amples never showcasing the use of MinuetoFullscreenwithout also using MinuetoFrame.

The feature providing the MinuetoPanel class (Panel) in Mac has several differences. First,
it provides two methods from MinuetoTool to determine the display size (separate feature Dis-
play Size in MI). Second, it provides the MinuetoWindow.registerFocusHandler(...)
method which causes the requires cross-tree constraint to FocusHandler. And third, due to this
method, it also provides the MinuetoEventQueue class which was identified as a utility node
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and merged into this feature.
Based on the validation we conducted with the Minueto developers (see Section 4.4), we

know that MinuetoFrame and MinuetoFullscreen can be used separately, retrieving the
display size is independent of the Swing integration, and that using the focus handler is pos-
sible for all window types. As a test, we corrected these inconsistencies in the examples by
introducing a new HelloWorldFullscreen example (a copy of the HelloWorld exam-
ple) using MinuetoFullscreen instead of MinuetoFrame. This example also uses the two
MinuetoTool methods to determine the display size. Additionally, we added the use of the
MinuetoFocusHandler to the example HandlerDemo3. The resulting feature model then
contains both frame and fullscreen features as siblings under the Base Window grouping in an OR-
relationship. Furthermore, the method to register a focus handler and MinuetoEventQueue are
now provided by the FocusHandler feature. And lastly, the display size methods are identified as a
separate feature and grouped together with the Options and Tool Operations.

Graphical Elements The Image feature in Mac is optional. This is due to the method draw-

Line(...) of MinuetoDrawingSurface being used solely in two examples to draw lines.
In MI we identified it as a separate feature and placed it under GraphicalElement. Our algo-
rithm did pull this method out into a separate node, but as an operation belonging to Minueto-
DrawingSurface (in the root feature) it has no direct relationship to the other graphical ele-
ments. Mac has two additional features with methods to draw within an empty surface (in Image
Operations) and direct pixel manipulations (in Pixel Manipulation Operations). This shows a finer
level of granularity, similar to what the level of detail of the feature model elaborated by the sec-
ond Minueto developer (see Figure 4.6 on page 56). Lastly, MI contains a sub-feature Image which
provides the ability to create temporary images (i.e., empty surfaces that can be drawn into). In Mac

this is provided by the grouping feature Image.

Missed Features The one feature that our algorithm missed and that is present in MI is Capture
Swing Events. However, based on our study with the Minueto developers and the insight we gained,
the developers did not regard it as an important feature. Due to that their decision was to hide it
from the API documentation and not provide any example showcasing the use of it. Since we set
hypothesis H3 to hold, our algorithm removed the corresponding API and did not consider it fur-
ther. As a reminder, there exists a listener class for each handler, e.g., MinuetoKeyListener
for relaying Swing key events to the corresponding MinuetoKeyboardHandler. However,
if hypothesis H3 is set to not hold, the listener classes are placed as a child under their respec-
tive handler classes, e.g., a feature providing MinuetoKeyListener is a child of the fea-
ture for MinuetoKeyboardHandler. We designed MI such that there are feature interac-
tions between Capture Swing Events and the individual handlers. For example, choosing Cap-
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ture Swing Events and Keyboard, would provide MinuetoKeyboardHandler but also the
MinuetoKeyListener to allow the user to capture key events in Swing and handle them in
Minueto. As we discussed in Section 6.1, our algorithm currently does not detect feature inter-
actions. However, the result produced by our algorithm accurately depicts the dependencies of
listeners.

Summary Both feature models have 18 features in common (out of 27 features in MI and 24
features in Mac). The main features were identified by the algorithm. Some of the features—which
provide one operation or group a few operations—were not identified. This is due to the usage of
these operations in examples. For instance, Options and Tool Operations in MI provides operations
that are separated into three separate features in MI (OS Detection, Alpha Transparency and Hard-
ware Acceleration). Out of the three important groupings (window types, graphical elements and
handlers) all three were detected by the algorithm. As mentioned above, the examples are slightly
flawed in the way they make use of the API. This brings to light an additional benefit of auto-
mated concernification. A designer can use the result of the automated concernification algorithm
to design a coherent and comprehensive set of examples that showcase the use of a framework’s
API. For example, the designer would realize that there is no example showcasing just the use of a
fullscreen window without the use of a frame. As we discussed above, providing such an additional
example would correctly result in the two features being detected as siblings.

Due to operations being pulled out when their usage differs from their containing class, the
algorithm in general produces a feature model with a very fine level of granularity. However, the
number of features might turn out to be unreasonably large. Using the option to reduce the size
conforms well with our version of the feature model. In MI we chose to not provide a fine level
of granularity. The Minueto developers chose a finer granularity in certain cases (see Section 4.4).
For example, they chose to provide a finer level of granularity for three (out of 5) image manipu-
lation operations (crop, scale, and rotate), whereas in Mac the image manipulation opera-
tions were merged back into the parent feature Image. In addition, the second Minueto developer
chose a fine granularity level for drawing inside an image (drawCircle, drawPolygon, and
drawRectangle of MinuetoImage). This shows that a designer might even want to vary the
granularity depending on the feature group. The intention of our automated concernification algo-
rithm is that the designer can make adjustments to the feature model after the algorithm produced
the initial version.

6.3 Qualitative Study with Android Notifications
The Automated Concernification algorithm was designed incrementally taking into account the
design of the Minueto framework and the Workflow concern. To validate whether the algorithm
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produces accurate results for other frameworks, we performed a user study using a third framework.
For practical relevance, we wanted to perform the study on a widely used framework which is
actively and continuously developed and maintained. Furthermore, the framework should contain
potentially many features and have examples that showcase the use of them.

The framework we chose for the study is the Android SDK [6] that allows app developers to
create mobile apps for Android devices (phones, tablets, watches, and car infotainment systems).
The Android SDK was first released in October 2009 along with Android 2.0 and has since been
updated frequently along with the Android platform. We use version 8.0 which was released in Au-
gust 2017. Within the SDK, Android distinguishes by API level to identify different revisions of the
API. Version 2.0 corresponds to API level 5, whereas version 8.0 corresponds to API level 26. The
core of the Android SDK provides 2235 public classes, 449 interfaces and 21773 public methods.
Due to the large size of the Android SDK our study focusses on one specific part of the Android
SDK, namely notifications. Several examples are provided showcasing different features and uses
of notifications. In general, notifications provide an app developer the ability to show a “message
that Android displays outside [an] app’s UI to provide the user with reminders, communication
from other people, or other timely information from [the] app. Users can tap the notification to
open [the] app or take an action directly from the notification” [11].

To build apps that support many API versions, Android provides a support library which sup-
ports newer features for older versions by “gracefully fall[ing] back to equivalent functional-
ity” [12]. This relieves app developers from handling different API versions on their own. The
support library’s minimum required API level is 14 (Android 4.0). The support library defines 396
classes, 142 interfaces, and 3896 methods. For example, to support push notifications across all
those versions, the support library provides an additional class NotificationCompat to be
used instead of the Notification class from the core SDK. Depending on which API version
a method is executed on, it will be handled differently to support features that were added later.

6.3.1 Study Preparation
This section describes the steps taken to prepare the study. First, we discuss which examples were
selected. We then describe the focus of the study on backward compatible notifications. Finally,
we describe how automated concernification was performed and show the resulting feature model.

6.3.1.1 Selection of Examples

Android provides guides for developers on different topics besides examples. The official IDE
for Android app development—Android Studio—provides the option to import code samples that
showcase the use of the API. The examples can be run in a simulator or on a real device. The
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samples are maintained in an Android specific repository4, and mirrored to GitHub5.
For notifications, the following samples are provided:

• ActiveNotifications,

• BasicNotifications,

• CustomNotifications,

• LNotifications,

• MessagingService,

• NotificationChannels,

• Notifications,

• SynchronizedNotifications,

• WearNotifications, and

• XYZTouristAttractions.

We excluded SynchronizedNotifications from our study because it was deprecated in February
2017.

6.3.1.2 Focus on Backward Compatible Notifications

In total, the API related to notifications comprises 65 classes and 11 interfaces, which is a signifi-
cant number. The classes include those for core notifications (class Notification) supporting
the latest features and backward compatible notifications (class NotificationCompat). In
fact, they share the same structure of classes and in large the same API. The main differences are
the classes NotificationChannel and NotificationChannelGroup as well as the re-
spective methods in the NotificationManager class for managing them. These classes are
only available in the core notifications part. However, with API level 26, it became mandatory to
provide a channel to which notifications are assigned to.

To avoid overloading the participants with a feature model that is very large and contains dupli-
cation, our study focusses on the backward compatible notifications. This is supported by the fact

4Repository platform/developers/samples/android hosted on https://android-review.googlesource.com/
5https://github.com/googlesamples/
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that most samples make use of compatible notifications. Furthermore, due to the high fragmenta-
tion of Android platform versions, it is generally recommended to ensure compatibility across as
many versions as possible6 by making use of NotificationCompat and Notification-
ManagerCompat from the support library. This ensures that new features can be added while
providing compatibility for older versions. The user does not have to write conditional code since
the API handles it. Our decision is further confirmed by the fact that the official developers
guide [8] makes use of the NotificationCompat class.

However, there are three samples that either just use core notifications or mix the use of both.
For consistency, we replaced the use of “Notification.” with “NotificationCompat.” in the source
code of the samples LNotifications, NotificationChannels and Notifications. Furthermore, Noti-
ficationManager was replaced with NotificationManagerCompat unless, as men-
tioned above, the methods of NotificationManager were used for managing notification
channels or groups.

6.3.1.3 Performing Automated Concernification

We performed automated concernification on the Android SDK with the notification samples. The
hypotheses that hold are H1, H2 and H4 (see Section 5.4). Due to the large size of the API, not
all code elements are used in the examples, only the most important ones, and as such, H3 does
not hold. In order to reduce the feature model size for the participants we enabled the hypothesis
nevertheless, thus focussing on the important API elements actually used in the examples only. The
interface allows a participant to report a feature that is missing providing the information of the
feature, such as its name, parent, and relationship. For the same reasoning, we additionally enabled
the option to minimize the size of the resulting feature model, which moves operations back to
their class in case they were not merged with any other elements.

Determining the names for features is out of the scope of this thesis. However, to make it easier
for participants, providing a useful name for features is helpful. Therefore, we manually named the
resulting features based on the API they contain. In most cases the name resembles the containing
class.

Figure 6.5 shows the automatically determined feature model of Android Notifications. There
are 15 features and four constraints. The feature Use Newer Notification Manager Features is
highlighted in grey because it does not have any realization model and is therefore just a grouping
feature. The other two groups are abstract super-classes and therefore their children are in an OR-
relationship.

6See https://developer.android.com/guide/topics/ui/notifiers/notifications.html#compatibility
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Figure 6.5: Android Notifications Feature Model determined by Automated Concernification

6.3.2 Study Task
The task of the participants is to provide feedback on the accuracy of this automatically determined
concern interface for Android Notifications. We designed a convenient to use, interactive website
for the participants to input their feedback. The website shows the feature model and allows a par-
ticipant to view the API for each feature. Additionally, the cross-tree constraints are listed. Each
element of the feature model (i.e., features and their relationships) can be accepted—i.e., the partic-
ipant agrees that it is in fact a user-perceivable feature—or rejected. Rejecting an element requires
the participant to provide an explanation which describes the rationale or provides an alternative.
For example, a feature could be rejected because the participant disagrees with the name describing
the functionality the feature provides. Similarly, for relationships, it is possible that the relationship
type or parent is deemed incorrect, and as such, the participant needs to indicate the correct one
according to his view.

In addition, missing features can be proposed by a participant using a suggestion that includes
the name of the feature, the parent feature, and the proposed relationship type. Furthermore, feed-
back on the determined cross-tree constraints can be provided. Figure 6.6 shows a screenshot of
the study website displaying the feature model of the study subject. The participant feedback is vi-
sualized directly within the feature model for features and relationships with green and red colour
highlighting (as can be seen in Figure 6.6). In addition, the feedback is also listed in textual form
in the sidebar on the right at the bottom.

In terms of the API, due to the large size, if no feedback for an API element is given, it is
considered to be accepted. Participants can reject any element of the API and provide a reasoning
for it, e.g., for misplaced API elements the participant can specify the feature that he thinks the
element belongs to instead. Figure 6.7 shows a screenshot of the study website when viewing the
API provided by a feature. In this case, the API for the feature Notification Channel is shown.
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Figure 6.6: Automated Concernification Study Website

Figure 6.7: Viewing the API of a Feature on the Automated Concernification Study Website
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6.3.3 Study Participants
An interesting insight from the Minueto study (see Chapter 4) we gained was that it is possible
that the internal knowledge of how a framework is designed and implemented can bias the view
when looking at it from the user’s perspective. Users of an API are usually not aware of the internal
details and mainly focus on what can be accomplished with an API and how it can be accomplished.
We therefore recruited users (i.e., app developers) of the Android SDK. We required participants
to have previously used the Android Notifications API. We recruited four participants (P1 to P4).
Two were recruited through an online community for Android developers, one through a Google
Developers Community Group (GDG) for Android Developers, and one through McGill’s School
of Computer Science student body. All of the participants had at least three years of experience with
Android app development, and three of the participants had professional Android app development
experience.

6.3.4 Data Analysis and Results
Using the feedback provided by the participants, we perform a qualitative analysis of the data
and discuss it in this section. To verify the validity of the feedback, we also consider the official
(textual) notifications guide [11] providing an overview on notifications, their different features
and instructions on how to create them.

6.3.4.1 Features and their Relationships

Three participants (P1, P2, and P3) agreed with all the features. P4 rejected the feature Addi-
tional Wear Extensions commenting that “I’m not sure why the content of Additional Wear Ex-
tensions is not part of the parent Wear[eableExtender]”. Consequently, the relationship to the
parent was also rejected by P4 with the reasoning that “I think everything in the Additional Wear
Extensions could be part of the parent”. This optional child feature provides four methods of
WearableExtender. Furthermore, it contains one method of NotificationManager-
Compat and three methods of NotificationCompat.Builder. They were all used together
in one example. However, based on their names they do not seem to be related and none of them
are mentioned explicitly by the official user guide [9].

P3 commented that “all notifications need a title and a small icon at the very least”. According
to the documentation [11] the only requirement for a notification is a small icon. However, in [8]
the documentation provides an example with a small icon, content title and text, and priority. In
essence, while it is possible to create a notification with only a small icon it is not very useful to
the user. The feature model produced by our algorithm contains the required methods in the root
feature, plus additional methods. The designer could add a usage protocol that requires to call the
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required methods before build can be called.
In terms of relationships, two of the participants (P1 and P3) mentioned that the relationships

of the features under Style should be in an exclusive relationship (XOR) because “only one style
should be applied to any single construction of a notification”. Style provides an abstract super-
class Style and the children provide concrete sub-classes (e.g., BigPictureStyle). However,
the feature model does not specify run-time constraints but rather provides the API at design-time.
A user might use different kinds of notifications in an application that require different styles and
then create several instances of notifications with a different kind of style for each notification.
This is reflected with the OR-relationship.

P1 also provided a comment relating to the Extensions feature group: "Overall I agree with
the grouping of the features, the “Extensions” [group] is one that is rather tricky, since, for exam-
ple, “Wear Action Extensions” can fall under either “Extensions” > “Wear” or under “Actions” >
“Wear””. Wear under Extensions provides the main extensions for watch-specific features whereas
Wear Action Extensions adds the ability to extend actions with watch-specific features. While
both are only used for watch apps, there is no indication in the documentation [9] stating that
both need to be used together. NotificationCompat.WearableExtender can be used to
specify special settings for the watch app, and NotificationCompat.Action.Wearable-
Extender allows a developer to specify watch-specific settings for actions. If they were always
used together, it would indicate a feature interaction between Wear and Actions. P1 ended the
comment remarking that “[i]ntuitively, the approach in this model seems to be the correct choice,
but I’m unable to place exactly what makes it so”. The Extensions group was formed due to the
inheritance relationships between the NotificationCompat.Extender interface and the
implementing classes NotificationCompat.WearableExtender (in the Wear feature)
and NotificationCompat.CarExtender (in the Car feature). The Wear Actions Exten-
sions feature was placed under Actions due to the method extend(Action.Extender) being
pulled out of its class NotificationCompat.Action.Builder (which is provided by Ac-
tions). The NotificationCompat.Action.WearableExtender class was merged with
this method due to the same example usage.

6.3.4.2 Missing Features

P2 stated that RemoteInput could be added “as an optional child of Actions”. We excluded
this class because even though there are methods that use it, it is not solely related to notifi-
cations. RemoteInput provides the ability to collect input from the user, for example, to ac-
complish reply actions within notifications. If we do not disregard this class, the algorithm in
fact produces a sub-feature of Actions which contains the RemoteInput class along with the
addRemoteInput method of NotificationCompat.Action.Builder. In addition, a
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requires constraint to the RemoteInput feature is added from the Car feature due to a method
(called setReplyAction) that is provided taking as a parameter a RemoteInput instance.
A further investigation into the complete API of Android revealed that besides notifications the
RemoteInput class is only used in code that is hidden from the user7. This explains why the
designers of the Android SDK did not group the RemoteInput class with the notifications API.

P3 remarked that “sound, vibration, and light don’t seem to be covered”. Only three of the re-
lated methods were used in individual examples, the examples do not use most of the methods relat-
ing to these features and were therefore removed. The participant added that “[t]he old implemen-
tation (before channels existed) should be under Android Compatibility Notifications, whereas the
newer sdk’s have it under [notification] channel”. Up until API 25, sound, light, vibration, and also
priority had to be set per notification as methods on the NotificationCompat.Builder.
With the introduction of notification channels in API 26 these were added to the channel. This
also allows an app user to modify the settings because the notification channel settings are exposed
within the system settings. The participant further added that “using the new features would mean
that some of the older features shouldn’t be used”. However, maintaining compatibility across
different API levels means that for those platforms that do not have notification channels, these
settings need to be still set using the methods on the builder instance. The documentation on
notification channels explicitly states this fact, for instance, when referring to the importance of
notification channels [10]:

To support devices running Android 7.1 (API level 25) or lower, you must also call
setPriority() for each notification, using a priority constant from the Notifi-
cationCompat class.

In the core notifications API that does not provide compatibility and only supports the newest API,
the corresponding methods on the Notification.Builder are marked as deprecated and the
documentation refers to the corresponding methods in the NotificationChannel class. A
usage protocol could ensure that both methods are used as required for compatibility if the user
selects Notification Channel and intends to use any of those methods.

6.3.4.3 Constraints

P1 rejected three constraints. P1 only accepted the constraint Wear Action Extension 99K Wear. The
three rejected constraints are caused by structural dependencies where the type that is referenced
is not part of the API allocated to one of the ancestor features, but associated with a feature located

7Either through the non-public visibility or the Android-specific pseudo-annotation @hide to hide public API
from the user.
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in a different branch of the feature model tree. In all cases one or more methods were pulled out
and merged due to matching example usage.

• Messaging 99K Notification Channel/Actions: The Messaging feature provides two methods
of NotificationChannel and one of NotificationCompat.Action.Builder.
However, the participant stated that they belong to the corresponding feature of the class. In
the case of the latter, P1 stated that “while the setAllowGeneratedReplies method
inside NotificationCompat.Action.Builder is something that would commonly
be used with the Messaging style notification, it’s not required, whereas it’s something that
always is used with a notification action”. However, while it is related to actions, in the ex-
amples it is always used together with the messaging style. The method allows enabling the
automated generation of possible choices for replying based on the context.

• Wear 99K Actions: This constraint is caused by the method addAction(Action) of
WearableExtender in Wear. P1 suggested to “move the addAction method to be
under Wear Action Extension”. This method allows the developer to add actions that should
only appear on a watch app. As such, an alternative could also be to put this method into a
feature interaction model for Wear and Actions, in which case this method is only included
in the API when a user selects both features.

P1 only agreed with the cross-tree constraint Wear Action Extension 99K Wear with the reason-
ing that “Wear actions should only be used if the type of notification is a Wear notification”. As
we discussed above, the two features can be used independently. Alternatively, it would be possi-
ble to restructure the feature model such that Wear is a logical grouping with two children in an
OR-relationship providing NotificationCompat.WearableExtender and Notifica-
tionCompat.Action.WearableExtender. P4 removed all cross-tree constraints but did
not provide an explanation as to why. This confirms most of the feedback of P1 since the only
way the integrity of the API can be maintained with the removal of the constraints is to move the
corresponding methods to the target of the constraint.

6.3.4.4 API

P3 rejected the method addPerson(String) of the NotificationCompat.Builder

class provided by the root feature. The participant stated that the method is deprecated and pro-
vided a reference to the API reference, however, explicitly referring to the core notifications, i.e.,
Notification.Builder. In API level 28, the method was replaced with addPerson(Per-
son). As we described above, we excluded the core notifications. In the backwards compatible
notifications, this method is not deprecated.
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Further to the rejection of the addPerson method, P3 suggested that the method would not
necessarily fit into the root feature because it is only specific to “apps relating to actual contacts
(which can be whitelisted from silent mode)”. Our algorithm did move it out of its class, but due to
the size minimization it was moved back. Depending on the desired granularity of the developer,
this could be shown as a sub-feature.

This signifies the divergence between the core and backward compatible notification APIs.
In order to maintain compatibility to older API levels, the existing method cannot be replaced.
However, the designers of the API chose—for reasons unknown—not to add the new method to
NotificationCompat.Builder and providing a fallback for older versions. On the con-
trary, when introducing notification channels, the constructor Builder(Context) of class
NotificationCompat.Builder was marked deprecated and replaced with a new construc-
tor taking a notification channel ID as a second argument (Builder(Context, String)).
As a fallback for older devices, the channel ID is ignored.

6.3.4.5 Analysis Summary

The feedback of the participants shows that they in large agree with the produced concern interface
of the Android Compatibility Notifications API. In one case we disregarded a class (Remote-
Input) that seemed relevant to the Android SDK as a whole although it is only used for notifica-
tions from the user’s perspective (app developers).

The quality of examples plays an important role in our algorithm. Some parts of the algorithm
are fragile to the quality of the examples. One of them are the cross-tree constraints. The cross-tree
constraints that were rejected by some participants showcase this. However, our algorithm ensures
that the integrity of the API is maintained. As we discussed earlier, this can serve as feedback
to the developer to improve the examples. Additionally, our algorithm provides an initial concern
interface which the developer can fine-tune after.

If hypothesis H4 (see Section 5.4) is set to not hold, the methods causing the cross-tree con-
straints would remain with their class (as explicitly suggested by one participant). However, then
other cross-reference dependencies would cause constraints that would otherwise be merged into
the same feature because they always need to be used together.

We consulted the official documentation for notifications [8, 10, 11]—including the guides for
watch [9] and car [7] apps with respect to notifications—to crosscheck whether there are any
potential features that participants did not explicitly mention as missing features. We identified
three features. For example, there are two additional styles that can be used, one for media con-
trols and track information (MediaStyle) and one for providing a custom layout for notifi-
cations (DecoratedCustomViewStyle). When unused API elements are not discarded by
the algorithm (by specifying hypothesis H3 to not hold), the two classes are detected as sep-
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arate features and grouped as siblings to the other styles under the Style parent feature. An-
other feature is NotificationChannelGroup which allows grouping notification channels,
e.g., for apps supporting multiple accounts that provide the same notification channels per ac-
count. In this case, due to methods in NotificationManager cross-referencing Notifica-
tionChannelGroup that are never used, the resulting concern interface provides it as a fea-
ture. However, NotificationChannel (along with NotificationManager) is placed as
a child under NotificationChannelGroup due to the crossref edge from the former to the
latter. This also reveals a flaw of our implementation (see Section 5.6) where we didn’t consider
generic types for return or parameter types of methods. Addressing this results in an additional
constraint between the parent (Notification Channel Group) and the child (Notification Channel).
Based on the provided API it makes sense, since NotificationChannelGroup alone can
not be registered without the appropriate method from NotificationManager.

However, these features are not covered in the examples we used as an input to the notification
examples. The developer can in the end add those features when fine-tuning the concern interface.
As well, the developer is reminded that the examples need to be improved because they do not
showcase these features.

6.3.5 Study Limitations and Threats to Validity
The Automated Concernification algorithm does not provide proper names for the features that it
determines in the sense that the name concisely reflects what it provides. In order to be able to
show the participants a feature model, we determined names for the features manually based on
the API they provide. This can influence the participants. To minimize the researcher bias, where
possible we named the features based on the classes they contain. The participants were required
to be familiar with and have used the notifications API of Android before. All participants had at
least three years of experience developing Android apps. However, the specific knowledge of the
individual participants can influence results. We triangulated the responses of each participant with
the official documentation (user guides and API reference) to verify. In some cases, we manually
ran sample code in the simulator to verify effects of API calls. For example, the fact that the
participants did not miss specific styles of notifications could be because they have never used
them. Using the official documentation mitigated this participant bias.

In terms of transferability, in addition to the two small frameworks we concernified, we chose
a large framework that is widely used in industry. Android has been continuously developed for
several years and it evolves at a fast pace. With this fast pace comes the challenge of maintaining
compatibility across older devices that smartphone users still use. While we restricted the study
to notifications, this part of the API has a decent size, consists of different features and is fairly
complex when going beyond a simple notification. This API can be seen as representative of the
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framework as a whole. However, it is possible that performing automated concernification on a
fourth framework could expose something we missed. For example, the Spring framework makes
heavy use of annotations or XML configurations to configure the framework. Our algorithm cur-
rently does not take this into account.

6.4 Summary
This chapter evaluated the accuracy of the automated concernification algorithm. We evaluated
three frameworks. The Workflow concern is a concern that was originally conceived as a concern
from which code was generated. We therefore know the features and their API in advance, which
enabled us to evaluate the accuracy in detail. The second framework is Minueto where we vali-
dated our feature model in a qualitative study with the developers in Chapter 4. This allowed us
to compare the validated feature model with the automatically concernified one. To ensure that
automated concernification works for large frameworks used widely in industry, we performed au-
tomated concernification on Android Notifications. We conducted a user study with app developers
to validate the produced concern interface.

Overall, the results show that a high number of features are discovered by the concernification
algorithm. In the case of Workflow, all features were found. For Minueto and Android Notifications,
even though the examples have some flaws, the main features were detected. In terms of relation-
ships, the use of structural dependencies and simplification of the graph based on the relationship
types provide very good results.

The validation in this chapter confirmed one insight from the study with Minueto develop-
ers (see Chapter 4). The desired granularity of the feature model depends on the intention of the
developer and can vary among different feature groups. For example, the image transformation
operations in Minueto were identified as individual features by both Minueto developers. Our al-
gorithm identified them but moved them back into the parent to minimize the overall number of
features. The validation revealed an additional insight. In the case of Workflow we implemented
the examples such that all the API is used and there is an example showcasing each feature in-
dividually. This produced a concern interface that is almost 100% accurate. In the case of “real
world” frameworks like Minueto and Android Notifications, the examples are not flawless. The
performance of our algorithm is affected by the usage of the API in the examples. For example,
our algorithm has trouble modularizing API elements that are never used in any examples. In Min-
ueto, one feature (capturing Swing events) was missed, whereas in Android Notifications three
were missed. However, all four cases seem to pertain to features that are rarely used by users of
the frameworks.

In any case, the developer can in the end make adjustments to the concern interface result. A
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developer can do this with minimal effort provided she has access to a tool that allows her to make
adjustments to the feature model or move API elements between features in a quick and intuitive
way.
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7
Related Work

7.1 Concernification
To the best of our knowledge, there exists no other approach that addresses all the benefits of
concernification as described in Chapter 3. The most similar related work are the design fragments
approach proposed by Fairbanks et al. [40] and framework-specific modeling languages (FSML)
by Antkiewicz [13].

7.1.1 Design Fragments
A design fragment [40] encodes a design that uses a framework for a specific purpose. A design
fragment specifies parts of the framework, i.e., the parts of the framework API that are relevant
to achieve the goal of the design fragment. Furthermore, it declares the code elements the user
needs to provide. and in what relationship they are with the framework provided elements, i.e.,
whether they must sub-class a class, implement an interface, or override a method. The described
API and the user code elements can consist of classes and interfaces, methods, and fields. A design
fragment also includes a behavioural specification that specifies that the user is required to create
new instances and invoke methods. In addition, support for XML configurations, which are used
by many frameworks, is provided [39]. Furthermore, a design fragment can be accompanied with
free-form text for documentation reasons. The approach recommends a common text template to
describe more detail, e.g., for each method, how often it is invoked, whether it is a callback method,
etc. A catalog of design fragments can provide a list of “conventional solutions to problems” for
a framework. Within the catalog, design fragments can be categorized into stable, unstable, and
testing categories. While design fragments provide a way to mark a design fragment as deprecated,
there is no way to refer to the design fragment that should be used instead.

The design fragment language is defined using an XML schema definition (XSD). This allows
a tool to read a design fragment specification and use it to verify that the user correctly applied the
fragment within the client code. To specify that a design fragment is being used, the user needs
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to add annotations to the source code elements that correspond to the ones prescribed by the user-
provided elements of the design fragment. The names of those elements are referred to as roles in
the annotation. The authors describe a tool that is provided as an Eclipse plugin that allows a user
to view a catalog and the instances of design fragments, and the tool provides feedback on any
errors that are found during analysis of the code to ensure the design fragment has been correctly
applied. However, there does not seem to be an editor to create design fragments, requiring to write
the XML manually according to the schema. Furthermore, the tool is not available for download.

In general, design fragments and concernification provide a partial specification of the sub-
set of the framework API and user-relevant code (glue code). There are however many differ-
ences between our concernification approach and design fragments. First, design fragments pro-
vide a loose collection of example uses of a framework, i.e., there exist no relationships between
them (groupings, constraints, etc.). In contrast, our framework concern interface provides all user-
relevant framework features via the variation interface, and the inter-relationships of the features
are clearly expressed in the feature model. Furthermore, design fragments do not provide any in-
sight on the impacts that the use of a fragment has on high-level goals. Our customization interface
and the mappings that the user needs to establish to his application model elements, though, is
similar to the bindings that the design fragments user needs to provide. However, while in our
case mappings are defined in one place during the reuse process, with the design fragments ap-
proach the bindings that take the form of annotations have to manually be placed on the source
code elements that are potentially scattered over multiple modules. Third, while design fragments
distinguish between callback methods (with a description of when and how often they are called)
and service methods (framework-provided methods), we distinguish between methods that can be
called by the user and those that should be customized. Service methods are part of the usage
interface, and all callback methods are part of the customization interface, however, the design
fragments language definition only provides a way to textually describe those methods that need
to be implemented/overridden as documentation information to the user. Additionally, there could
be other methods in the customization interface that are neither callback nor service methods, such
as methods that are advised with additional behaviour. Finally, in our approach, the structure and
behaviour a user always has to use (glue code) can be encapsulated within the concern and applied
through mappings to the user’s design, whereas with design fragments the user needs to manually
add glue code to his program. A design fragment provides a behaviour specification to ensure that
a new instance is created or certain methods invoked. Other types of user-provided behaviour can
only be textually described. Our concern interface allows the inclusion of partial behaviour using
sequence diagrams. Furthermore, the usage protocol of API methods can not be encapsulated in
design fragments. With concern interfaces we can specify usage protocols.
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7.1.2 Framework-Specific Modeling Languages
Another approach that has very similar goals to ours is proposed by Antkiewicz [13], which intro-
duces framework-specific modeling languages (FSML) as domain-specific modelling languages
(DSL) for a specific framework. A FSML is designed for a specific framework to express a
framework-based application to help application builders develop an application with the frame-
work. It formalizes the API concepts, their features, and constraints. The concepts are usually
classes and the features specific parts of the class that need to be provided. FSML makes use of
cardinality-based feature models [24] allowing features to have a multiplicity. Features are very
fine-grained and code-centric and encode required user-provided code, such as the name for an
instance or extending a certain super-class. In addition, mappings can be specified to define the
correspondence between features and structural and behavioural code patterns. This makes it pos-
sible to achieve round-trip engineering by providing forward mappings (how to generate code from
a feature) and reverse mappings (how to recognize an instance of a feature in the client code). A
framework-specific model represents a feature configuration and describes how a framework-based
application uses the FSML of a framework. A generic FSML infrastructure built as an Eclipse plu-
gin is provided.

In comparison to our concernification approach, FSMLs require the definition of a metamodel
which extends a generic FSML metamodel for each framework. The effort in creating a specific
DSL for each framework is very high. The upper level features represent higher level concepts,
and the features nested under them represent customization and usage steps as well as constraints.
For instance, a higher level concept is usually a class, and the underlying features the required and
optional means to use that class in an application. Names of features describe the customization
or usage steps. For example, the mandatory feature extendsApplet refers to the fact that the
client needs to extend the Applet class. Furthermore, features in FSML have code mappings
which enable round-trip engineering and application migration. In contrast to this code-centric
view, our approach clearly specifies the functional (user-perceivable) features and thus presents a
high-level view of the complete framework. The feature model of an FSML contains the variations
as well as customization and usage steps. In our concern interface the details about customization
and usage are handled separately in the interface. This separation of concerns allows a user to deal
with customization and usage afterwards, i.e., after selecting the desired features. The required
glue code can be included within the design model of a feature.

In summary, FSMLs are targeted at the code level which requires a code-centric view, whereas
our approach is targeted at the modelling level. However, it needs to be investigated in the future
whether and how both approaches could be combined to result in the best of both worlds. For
example, the feature model could show the high-level view and instead of having a fine level of
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granularity in the feature model, individual features could have a realization models that include
the round-trip engineering hooks found in FSML. Round-trip engineering makes it possible to
ensure that model and code are synchronized. If a user modifies the code after code generation, it
is important to update the models, e.g., to verify that no violations were introduced.

7.1.3 Comparison
Both approaches described in the previous sections use Java Applets as an example. For these, there
are 20 official demos/examples that are provided with the Java Development Kit (JDK). We ran
our automated concernification algorithm on Java Applets using the official demos as examples.
This allows us to compare whether the automated concernification algorithm detects the design
fragments/features manually determined in the two approaches.

A Java applet is a small Java program that is intended to be embedded inside another applica-
tion [84]. It provides an interface between the graphical user interface of Java (AWT/Swing) and
the other environment, such as a browser. In essence, it provides one class Applet that needs to
be sub-classed. Additionally, Swing provides a sub-class of Applet called JApplet for applets
that use Swing components. The official examples however do not make use of this class. Since
Java 9, applets are deprecated1 as they require a browser plugin which browser vendors are phasing
out. It is debatable whether applets constitute a framework as it can instead be seen as one feature
of the graphical interface part of Java. Nevertheless, it provides some variability. For instance, it
has lifecycle methods that can be overridden, and applet parameters that act like command-line
arguments.

Due to the nature of the Applet class, features from AWT/Swing can also be used with ap-
plets. However, in this comparison we focus solely on applets. Therefore, features outside this
scope that are specified in the two approaches are left out, such as code snippets that illustrate how
to define various listeners and how to run background tasks in separate threads. After excluding
these, only two relevant design fragments remain: Parameterized Applet and Manual Applet. The
framework-specific modeling language for applets however is very detailed. It has features for ex-
tending the Applet class, overriding various lifecycle methods, showing a status, and parameters.

The root feature that automated concernification finds contains the Applet class with a cus-
tomized sub-class as well as the method getAppletInfo() which should be overridden by the
user to provide information about the applet. Interestingly, both approaches do not mention this
method. For the lifecycle methods (init, start, stop, and destroy) our algorithm detects
three features overriding these methods: init, start and stop, and destroy. Furthermore, a feature
providing the showStatus method to show the status of the applet is detected. Another feature

1https://openjdk.java.net/jeps/289
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provides the getParameter method as well as the required getParameterInfo method
to override in the custom sub-class. This relates to the Parameterized Applet design fragment.
Lastly, two features are detected relating to manual invocation of an applet, one for init, and one
for start. The reason they are separated (the examples mentioned by Fairbanks relating to this
design fragment all call both of them) is because another example explicitly calls start when
handling an event. Our algorithm found more features providing other methods of the Applet
class, such as retrieving an image or playing an audio clip.

In summary, this shows that our automated concernification algorithm can automatically deter-
mine features based on the example usage that were manually determined from the examples for
the two approaches.

7.2 Automated Concernification
Automated concernification is broadly related to several fields, namely feature mining, feature lo-
cation, software maintenance and evolution, and program comprehension. The source code for a
particular feature needs to be located. Dit et al. [31] provide a comprehensive overview of feature
location approaches until 2011. Feature location is a common task performed by software develop-
ers during software maintenance, e.g., when adding a new feature, improving existing functionality
or fixing a bug. All surveyed papers provide solutions for identifying source code for a particular
feature that a developer is interested in. The approaches use three different location techniques.
Dynamic analysis approaches make use of execution scenarios that are analyzed. For example,
Wilde and Scully [126] describe software reconnaissance where one set of test cases does not in-
voke a feature and another set of test cases does. Eisenberg and Volder [37] propose an approach
that uses ranking heuristics to determine the relevance of a code element for a feature.

Static analysis feature location techniques make use of the dependency graphs of the source
code based on a program element or elements provided by the developer (e.g., [23,90]). This is of-
ten done in an interactive way where during the investigation the developer narrows or widens the
scope. In this context, Robillard and Murphy [93] propose to use concern graphs to describe pro-
gram elements and their relationships. Within the graph, the vertices represent program elements
(classes, fields, and methods) and the edges between them describe six types of relationships. The
relationships are more implementation-specific than ours, however, there is some commonality.
For instance, superclass refers to our inheritance relationship. The declares relationship specifies
that a class declares a method or field, which is similar to our containment relationship.

The third category of techniques relates to information retrieval (IR) approaches that take as
input a query and use textual analysis (e.g., [68]). Some approaches combine the use of differ-
ent kinds of techniques. For instance, Eisenbarth et al. [36] present an approach where execution
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scenarios invoking the features of interest are created by the domain expert. The scenarios are
dynamically analyzed to provide a mapping between scenario and invoked code. Formal Concept
Analysis (FCA) is used to help a developer manually identify relationships between scenarios and
computational units and essentially a mapping between features and computational units. A devel-
oper interested in the code related to a feature performs FCA iteratively using different execution
profiles to incrementally build a mapping between relevant code and features of interest. In com-
bination with the dependence graph retrieved via static analysis, program elements that were not
executed in the scenario but are relevant can be identified, and unrelated elements to the feature
can be removed.

Our approach is more closely related to reengineering an existing system into a Software Prod-
uct Line (SPL). In this area, several system variants are reengineered into an SPL. This migration
can be divided into three phases as proposed by Anwikar et al. [14]:

• The detection phase deals with locating the features by extracting relevant information from
artefacts, such as source code.

• The analysis phase uses the previously discovered information to identify commonalities
and variabilities, and to organize the functional features into a feature model.

• The transformation phase performs transformations on the artefacts to migrate the existing
system into an SPL.

Our first and second phase where the DAG is established and populated relate to the detection
phase. The third phase relates to the analysis phase where the DAG is simplified to retrieve a
tree that forms the feature model. Our algorithm does not transform existing artefacts. However,
the API related to each feature is placed within a design realization model. The resulting concern
interface allows a user to retrieve a customized interface variant of a framework based on the
desired features.

In the context of reengineering existing systems into an SPL, a family of products has been
created over time. However, each product is individual. The migration to an SPL is therefore a
bottom-up approach and is needed to facilitate systematic reuse and improve the development
by consolidating the code. It is often the case that the implementation of one product has been
continued and the same features across product variants have differences in their implementation.
In contrast, in our case we consider only one variant, the complete framework. Frameworks consist
of the combination of all variants that are possible. I.e., it is possible that there are features that
exclude each other and it is the responsibility of the user to not use them together.

Assunção et al. [15] provide a recent overview of the current research in reengineering appli-
cations into SPLs. Approaches from the survey by Dit et al. that fall into this category are also
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present in this study. In addition, more recent work is included. We discuss those approaches that
are related to our work here.

Damaševičius et al. [26] propose an approach that is similar to ours in its goal, to automatically
extract features and the feature model from Java code. Methods are considered as features. A
dependency graph is extracted from compiled Java code. The nodes represent methods and are
clustered according to the similarity of their dependencies to other methods (based on dependency
information from the dependency graph). All code elements, even those that are invisible to the
user, are considered. The resulting feature model is verbose and does not maintain the integrity
of the API. For example, applying the approach to four buffer classes provided by Java results in
a feature model with 73 features. Furthermore, cross-tree constraints and OR/XOR relationships
between features are not supported by the approach.

Ziadi et al. [130] propose a three-step approach to identify features from the source code of
product variants. The approach assumes that features are implemented consistently across the prod-
ucts, i.e., the names of code elements do not differ. First, the source code of a set of product variants
is analyzed by abstracting the structural elements of the code, i.e., packages, classes, attributes and
methods. The elements are represented as construction primitives and are considered individually,
i.e., each element might belong to a different feature. In the following step, feature candidates are
automatically identified. A feature candidate is a set of interdependent construction primitives. The
authors define interdependence between two construction primitives iff they belong to exactly the
same products. In those cases, they belong to the same feature candidate. In our algorithm, we
identify code elements as belonging to the same feature candidate if they are used in the same ex-
amples. The third step is manual and allows removing non-relevant features or adding any missed
features. The organization of the features into a feature model is not covered by this approach.

AL-msie’deen et al. [3] consider variability expressed through packages and classes in software
variants. This means that the structural elements of a class, attributes and methods, always belong
to the feature the class is in. In their experience from case studies, features are implemented at class
or package level. They distinguish code elements in source code as those that are common (called
common block) among all variants, i.e., mandatory, and those that appear only in some variants
(called block of variations), i.e., optional. Their mining process first identifies the code elements
that are common and the different sets of code elements that vary across the product variants.
Formal Concept Analysis (FCA) is used to identify those. In a subsequent step, the identified
concepts (sets of code elements) are further separated to ensure that they implement only one
feature. Using a combination of structural similarity based on dependencies between the code
elements and lexical similarity determined using Latent Semantic Indexing (LSI) the similarity
of code elements is determined. This is determined in binary form (similar or not) and FCA is
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used again to accomplish the separation of concepts. Like in Ziadi’s work, the feature model is
not determined. However, this approach determines potentially several mandatory features and
considers the possibility that code elements do not belong to the same feature even though they are
present in the same product variants.

Xue et al. [129] propose an approach that also makes use of FCA and LSI. They combine it
with software differencing to determine code elements that appear in all variants, and those that
appear only in subsets of variants. However, the set of features and their textual descriptions as
well as the information of which product variant contains which features needs to be provided as
input. FCA is used to find sets of features and code elements that are common and different among
product variants. LSI is used to determine which set of code element implements a feature.

Maâzoun et al. [67] propose a UML profile that augments feature information as stereotypes
to a design class diagram. Besides the feature name this includes the relationship types. Optional
and mandatory information for classes and their elements, and optional, mandatory and XOR re-
lationship information between classes is also provided. In addition, the UML profile provides the
ability to specify OCL constraints to ensure consistency. They describe an approach that aids the
extraction of the feature model and class diagram augmented with the stereotypes of the UML
profile from product variants with the help of FCA and LSI. Similar to the approaches by Ziadi
and AL-msie’deen, commonalities and variations are determined.

Some of the discussed approaches make use of Formal Concept Analysis (FCA). FCA is a
mathematical technique for analyzing binary relations [127]. It allows one to derive implicit re-
lationships between objects described through a set of attributes. A formal context is a relation
table that describes relations between objects and attributes. Performing FCA produces a concept
lattice, i.e., a line diagram, which depicts the natural hierarchical order between concepts of a con-
text (called the subconcept-superconcept relation). We could describe the relation between API
elements and their use in examples and then perform FCA to determine a concept lattice depicting
the relationships between API elements usages. However, we then loose the dependencies between
API elements inherent in the code which are essential to maintain API integrity. Without code
dependency information it is also difficult to determine the placement of unused API elements.

Martinez et al. [69] identify the challenge of practical adoption due to the lack of end-to-end-
support for bottom-up SPL creation, as is the goal of the works discussed before. To overcome this
challenge, they propose principles for a unifying framework and present a framework for bottom-
up SPL adoption. The main idea is to provide a framework that is independent of concrete types of
artefacts and algorithms to support all kinds of artefacts and algorithms. One of their goals through
this is to allow comparison of different approaches. They present an implementation of such a
framework called Bottom-Up Technologies for Reuse (BUT4REUSE). It is intended to be generic
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and extensible.
Further to the SPL migration approaches, another approach is explained in [77] where large

C programs, such as the Linux kernel, are mined for constraints between features. The features
are already known, because they are part of the build configuration (Kconfig). The approach is
specific to C programs due to the use of preprocessor statements such as #ifdef which contain
the feature name. The resulting configuration constraints can then be used to reverse engineer the
feature model.

Such an approach is described by She et al. [106]. They describe procedures on how to reverse
engineer feature models from a set of known features, their descriptions and their dependencies
described as logic formulas. They describe a procedure to identify potential parents based on a
ranking heuristic as well as the identification of feature groups. The user first has to choose from
the parent candidates and in a subsequent step choose which feature groups to keep. This is a
semi-automated approach, whereas our approach is completely automated. We could formulate a
heuristic based on information in the DAG (e.g., relationship types, names of elements, etc.) to
help in deciding which edge to cut in the simplification phase.

The idea of creating feature models that satisfy a set of constraints using logic formulas was
originally proposed by Czarnecki and Wasowski [25]. In our approach we could, in theory, map
our class hierarchy and parameter dependencies into constraints, generate a logic formula, and use
the approach by She et al. to determine a corresponding feature model. However, one disadvantage
in using logic formulas is that the information about the object-oriented hierarchy and the different
relationship types are lost.

Other approaches make use of natural language processing (NLP) on the textual documenta-
tion to determine features or tasks. One such approach is TaskNav [119], which extracts potential
developer’s tasks from the framework documentation. A task is a specific programming action de-
scribed in the documentation. Code elements mentioned in the textual documentation are related
to tasks. Different variations of a task may be found and a code element may be related to several
tasks, while in our case a code element is related to one particular feature. In addition, we are
interested in user-relevant (high-level) features, whereas tasks might be low-level. Nevertheless, it
might be interesting to combine NLP or information retrieval approaches for finding feature names
in the future. In addition, it could be helpful in deciding which edge to cut in the simplification
step of our algorithm, or for determining groupings of unused elements.
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8
The Need for Flexible Operation Signatures

Reuse is central to improving the software development process, increasing software quality and
decreasing time-to-market. Hence it is of paramount importance that modelling languages provide
features that enable the specification and modularization of reusable artefacts, as well as their sub-
sequent reuse. This chapter begins by introducing interfaces in the context of reuse in Section 8.1
and motivates the need for flexible signatures in Section 8.2. We then outline several difficulties
caused by the finality of method signatures that make it hard to specify and use reusable artefacts
encapsulating several variants (Section 8.3). The difficulties are illustrated with a running example.
To evaluate whether these difficulties can be observed at the programming level, we report on an
empirical study conducted on the Java Platform API as well as present workarounds used in var-
ious programming languages to deal with the rigid nature of signatures (Section 8.4). Section 8.5
concludes this chapter.

8.1 Introduction
Complex systems are rarely built from scratch. To improve productivity and achieve higher quality
during software development, it is common practice to rely on the existence of reusable artefacts.
Reuse of artefacts comes in different flavours [65]. Planned reuse [47] refers to the situation where:

1) a recurring development issue has been identified,

2) one or several solutions to this issue have been developed, and

3) the software artefacts (e.g., documentation, models (if any) and code) realizing the solutions
are packaged in a reusable unit and made available for reuse. At the programming level,
reusable frameworks and libraries are in widespread use.

The philosophy of model-driven engineering (MDE) is that during development high-level spec-
ification models of a system are refined or combined with other models to include more solution
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details, such as the chosen architecture, data structures, algorithms, and finally even platform and
execution environment-specific properties. Reuse in MDE is achieved through (domain-specific)
modelling languages, which capture the essential concepts relevant to the development of the soft-
ware at a given level of abstraction, and through model transformations that assist developers in
transitioning from one layer of abstraction to another towards a concrete solution and implementa-
tion. To be effective in this framework, models that represent the system at a given level of abstrac-
tion need to be generic enough to allow for (ideally many) possible solution-specific refinements
of the system at lower levels. This is even more true for models that are meant to be reusable.

Interfaces have been effectively applied at the programming level—but more recently also at
the modelling level—to enable reuse within and across abstraction levels during software devel-
opment [63]. This chapter reflects on the challenges that developers face when defining interfaces
for higher levels of abstraction or for units encompassing multiple solution variants. In particular,
we concentrate on the problems caused by the finality of signature declarations. Concernification,
which we discussed in-depth in Chapter 3, makes it possible to raise the abstraction level of frame-
works and in particular their API. Raising the abstraction of APIs exposes a difficulty when the
signature of operations depends on the particular feature the user wants to use. One case where we
observed this was in the Android Notifications API (see Chapter 6) where a new feature was added
to the API that required augmentation of an additional argument to the constructor of the builder
for notifications. Another example is the Association concern [16] that raises the abstraction level
of collections. In the design of the concern, common functionality like adding and removing of
elements, could not be designed at a high-level in a common way for all children features.

8.2 On Reuse, Interfaces and Signatures
As described in detail in Section 2.4, in the context of reuse there are at least two clearly distinct
software development roles that arise. The designer of the reusable unit is an expert of the domain
of the development issue that the unit addresses. She has a deep understanding of the nature of
the issue, but does not know in what contexts the reusable unit may be used. To facilitate this, the
designer strives to make the reusable unit as versatile and generic as possible, so that the solutions
can be applied in a wide variety of reuse contexts.

A user of a reusable unit on the other hand is an expert of the application he is developing.
He is aware of the specific requirements of the system he is working on. The user might desire
to solve a specific development issue using an existing reusable unit. The user does not know the
implementation details of the reusable unit, and only needs to be able to know which solution of
the reusable unit is most appropriate. Furthermore, the user needs to know how to customize and
use the chosen solution.
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Experience has shown that reuse of artefacts with explicitly defined interfaces leads to high
levels of reuse maturity [63]. Interfaces specify a contract that bridges the worlds of the designer
of a reusable unit and the (hopefully many) users of the reusable unit. Furthermore, applying the
information hiding principles [85], interfaces make it possible to hide solution complexity and
properties within a reusable unit, and hence significantly reduce the complexity that the users of
the reusable unit need to deal with.

A very common way of providing a static interface that allows the users to trigger functionality
provided by a reusable unit is an operation signature (or service signature). A signature is made
of the operation name, of a set of parameters, each one comprised of a formal name and type, as
well as the type of value returned by the operation, if any. Finally, some modelling or programming
languages also include in an operation signature the set of exception types that might be raised at
runtime when the operation is invoked.

Most statically compiled modelling or programming languages require signatures to always be
specified in their entirety. This forces the designer of a reusable unit to decide on the exact number1

and type of every parameter of an operation before she can declare an interface or signature for it.
Once declared, the signature is set in stone, i.e., the existing parameters are immutable, and no new
parameters can be added. It is of course possible to overload methods, i.e., declare new methods
with the same name and additional parameters, but then the API contains several methods.

While this might be sometimes appropriate, the finality of signature declarations poses dif-
ficulties to the designer and user of a reusable model in certain situations. These situations are
summarized here and then elaborated further in Section 8.3:

1. When a reusable unit encapsulates several solutions, it is sometimes difficult for the designer
to come up with a common final signature that works for all of the solutions. The situation is
similar when a modeller needs to define a signature in a model at a level of abstraction that
allows for different solution refinements.

2. With final signatures, it can be difficult for the designer to add a new feature to a reusable
unit in a non-intrusive way. The situation is similar for modellers who want to add a new
feature to a model of an existing product line.

3. When signatures are used to define callback interfaces that allow a reusable unit to trigger
reuse-context-specific functionality, it can be difficult for the designer to define a final call-

1Some statically compiled languages support the declaration of signatures with an arbitrary number of parameters.
For instance, in Java with the varargs feature [82], or in Go [116] and Python [87] (an interpreted language) with the
variadic function feature.
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back signature that is ideal for any reuse context. The situation is similar in reusable models
where the reusable behaviour has to trigger reuse context specific behaviour.

4. When a programmer or modeller designs a reusable unit x and reuses reusable unit y with
different variations, it is sometimes difficult to make a final decision, i.e., which variant from
y to use, since the reuse context of x is unknown. As a result, it is difficult to define a final
signature for the functionality offered by x, and it is difficult to specify behaviour in x that
calls operations of y if the variants in y have different signatures.

8.3 Problematic Situations
This section describes in detail four problematic situations that we identified.

8.3.1 Difficulties Defining a Common Interface for Alternative Implementa-
tions

When designing a reusable unit with several variations for a common purpose, a designer generally
aims at providing a common interface to the user that is independent of the concrete variation being
used by the user. This strategy is highly beneficial, because it allows the user to maintain a design
that stays at a high level of abstraction without depending on a concrete variation. A common in-
terface makes it possible for the user of a reusable unit encapsulating multiple solution variants
to replace a chosen variation with another one exhibiting different qualities without significant ef-
fort. In model-driven design a similar situation occurs when the designer uses abstraction to delay
deciding on solution-specific details. An interface at a given level of abstraction makes it possible
to explore different solution-specific refinements during development. Unfortunately, when signa-
tures are final once they are declared, it is difficult to provide a common interface in situations
where different implementations of an operation achieving the same functionality require different
parameters to execute.

For example, collections are reusable units that are used very frequently, and they come in
many variants offering different functionality and exhibiting different non-functional properties.
In programming languages, collections are typically grouped together so that they can be treated
in a similar way at a high level of abstraction. Java and C#, for instance, use inheritance to group
different kinds of collections and algorithms to process them.

But defining a common interface for all kinds of collections is difficult. For example, the sig-
nature for adding an element to a plain collection is typically add(Element), whereas adding
an element to a map is provided by an operation with the signature add(Key, Element). This
can be problematic if a user wants to treat maps and collections in a uniform way, e.g., to check
whether a collection/map contains a certain element.
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8.3.2 Difficulties Adding New Functionality
Consider Resource Management, which is a recurring functionality required in many applications.
At its core there are Resources which can be allocated to Tasks (signatures isAvailable()
of class Resource and Task.allocate(Resource)), and a ResourceManager class
provides operations to find and allocate a number of resources to a given task (findAvailable-
Resources(int)). A corresponding class diagram is shown in Figure 8.1.

Some applications might need additional functionality, which can be seen as additional features
of the Resource Management unit. Figure 8.2 shows a feature model with two optional variants.
Capability provides the ability to differentiate resources according to their capabilities, and Alloca-
tion Cost augments the behaviour of resource allocation to consider individual resource allocation
cost.

Generally, APIs are set in stone once published. The general recommendation is therefore to put
a lot of effort into initial API design [19]. However, APIs need to evolve to accommodate changing
requirements and integration of alternative solutions. In the case where the additional or optional
functionality needs to execute together with existing functionality and needs additional information
from the user to process, the situation is problematic. Since the signature of the operation providing
the existing functionality is final, it is difficult to add additional parameters to it, and doing so would
invalidate every place where the operation is being used.

For example, the optional feature Capability extends resources with capabilities. Such func-
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tionality might be required by a crisis management system (CMS) that needs to allocate workers to
missions, and differentiate the workers according to their capabilities, such as driver, fire fighter,
first aid provider, etc. In this case, a resource has an associated set of capabilities. Additionally,
resources are allocated to a task because they fulfill a needed capability. Therefore, in order to look
for available resources, additional information is required from the user: the desired capability for
which resources are sought for has to be specified. Hence, some of the operation signatures of the
reusable unit would need an additional Capability parameter: findAvailableResour-
ces(int, Capability) of ResourceManager, allocate(Resource, Capabil-

ity) of Task, and isAvailable(Capability) of Resource.
When signatures are final, though, it is impossible to provide a clean common interface to the

user of Resource Management that can be used at a high level of abstraction, i.e., with and without
the optional Capability feature. In programming, optional functionality of a method is often sup-
ported by overloading, or triggered by parameters at the end of the signature. The behaviour of the
method checks the value of the parameter, and if the user passes in a specific value, e.g., false or
null, the optional functionality is not executed. If the language has support for default values, the
designer can specify false or null as the default value, which relieves the user from needing to
do so. However, the user still needs to consider these parameters, understand their intent, make a
decision on whether to use them or not, and consistently use the correct ones if there is more than
one.

In our example, the designer of Resource Management is forced to provide a common find-
AvailableResources(int) method that provides the general ability to find available re-
sources, as well as an additional overloaded findAvailableResources(int, Capabil-
ity) method to support the optional feature. Alternatively, the designer can choose to define only
one operation findAvailableResources(int, Capability), and specify in the docu-
mentation of Resource Management that users who do not want to use the capability feature must
pass null as an argument when invoking the operation at run time.

Neither of the workarounds are ideal, though. The former is error-prone, because users who
have made the decision to use capabilities should only call the operations that have the Capability
parameter. If by mistake they invoke one of the operations that does not handle capabilities, the
consistency of resource management is jeopardized. The second workaround is at the least confus-
ing, because users who do not want to use capabilities must upon every operation invocation pass
null as a value.

8.3.3 Difficulties Providing a Callback Interface that fits all Reuse Contexts
Many frameworks take over the flow of control of an application and use the callback technique
to execute application code when needed. This requires the designer of the framework to specify
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at design time an interface that defines the operation signature of the callback method that the
framework will call when it wants to hand control to the application. However, the designer does
not know in which contexts her reusable unit is going to be reused, and therefore has difficulties
defining a final signature for the callback that will work in all contexts.

For example, the Allocation Cost feature (see Figure 8.2) augments Resource Management with
the functionality estimateTotalAllocationCost(Set<Resources>) that can deter-
mine the total cost of allocation given a set of resources. Since the allocation cost of an individual
resource typically depends on the state of the resource and since the designer of Resource Manage-
ment does not know anything about the state of the actual resources, the behaviour that calculates
the individual allocation cost of a resource needs to be provided by the user of Resource Manage-
ment and invoked through a callback. To this aim, the designer defines a parameterless callback
signature estimateAllocationCost() that needs to be implemented for the Resource
class by the user.

Unfortunately, this can be problematic, e.g., when Resource Management is reused in the con-
text of the CMS where workers are allocated to missions. Missions typically are performed in a
certain region or location. When allocating a specific worker to a mission, the allocation cost de-
pends on the distance between the worker’s current location and where the mission is taking place.
The current location of the worker—the resource—is part of the state of the worker, and accessible
in the callback method. Unfortunately, the location of the mission—the task—is not accessible.
Possible steps the designer can take to anticipate this problem is to include a dummy Object pa-
rameter in the callback. The user then has to create a class that subclasses Object with attributes
to hold the desired application-specific state. Additionally, the user then has to tell the reusable unit
at runtime which concrete instance of this new class to pass to the callback. This does work but is
very cumbersome.

8.3.4 Difficulties Delaying Design Decisions
An additional difficult situation arises in the context of software product line development (SPL)
and reuse hierarchies. Software product line development is an approach that is beneficial when
developing a collection of similar software systems—a family of products—that share some com-
monalities and differ in a well-defined set of features exposed by the SPL. To increase reuse,
functionality that has been identified as common is encapsulated within shared software artefacts
that are reused within multiple products. Unless the shared functionality is absolutely identical for
all products, it is again difficult for the designer of the shared reusable unit to define an interface
that satisfies the needs of each individual product. A specific product or feature might require a
slightly different variant of the functionality encapsulated within the reusable unit, which in turn
could require additional information to process. This resembles the difficult situations explained in
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Figure 8.3: Association Feature Model

sections 8.3.1 and 8.3.2. In a way, the design decision of which concrete product to produce in an
SPL is delayed until the SPL is configured with the desired set of features. It is only at that time
that it is absolutely clear what information is needed to process some shared functionality.

This situation is even more prominent when a designer of a reusable unit wants to reuse (within
her own design) some other reusable unit that offers different variations. For example, in [16] the
authors describe the design of a reusable unit Association encapsulating various association designs
based on different collection types with different features: support for unique elements, multi-
threading, enforcement of minimum and maximum amounts of elements, etc. A feature model of
such a reusable unit is shown in Figure 8.3. Internally, it uses Java collection types to implement
the different association features, as suggested by the names of the leaf features. However, it would
be possible to use collection types of another object-oriented programming language instead.

The designer of Resource Management can use the Association reusable unit to keep track of
one or more resources that are allocated to a task. The designer of Resource Management could
reuse any of the variants provided by Association to realize this relationship. However, each variant
exhibits different properties, in particular with respect to non-functional properties, e.g., perfor-
mance or memory usage. Since Resource Management is a reusable unit itself, it is impossible for
the designer of Resource Management, who now also is the user of Association, to determine the
most appropriate alternative to reuse, since this decision depends on the context in which Resource
Management will be reused in the future. Ideally, the designer would like to delay the decision [64]
of which specific variant of Association to reuse and complete her design using a common, high-
level interface.

8.4 Validating the Need for Flexible Signatures
This section provides proof of the existence of the problematic situations at the implementation
level. We describe an empirical study we conducted on the Java Platform API as well as techniques
and workarounds used in various programming languages to overcome some of the problematic
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situations.

8.4.1 Exploring the Java Platform API
This section presents an empirical study that we conducted to demonstrate the potential usefulness
of signature extension. Java ships with an extensive runtime library of reusable classes providing
different kinds of commonly needed functionality. We examined the Java 10.0.1 runtime and fo-
cussed our attention on the java.base module, which contains 5746 classes, of which 3245 are in
the java and javax root packages.

The Java programming language has evolved since version 1.0 (released in 1996) and contains
evolution information in the source code. We extracted the following information from the source
code of the java.base module (version 10.0.1) for each public method of public classes:

• the method’s signature

• whether the method overloads another method

• whether the method is marked as deprecated, which is the Java way of saying that a method is
outdated and should not be used anymore. If available, we also extracted since which version
the method is deprecated2, and from the Javadoc’s @deprecated tag the comment explain-
ing the deprecation, and whether the method was replaced with other alternative methods

• in which version the method was introduced (provided using Javadoc’s @since tag)3

• whether the method implements/overrides another (from a superclass/interface)

To accomplish this task, we used the AST Parser of Eclipse JDT and parsed each source file
contained in the corresponding source code file of the java.base module. We only considered the
main type declaration of the java file and hence ignored any additionally defined inner classes. In
total we found 1104 public classes and 11720 public methods. The following tables present the
gathered information.

As Table 8.1 shows, close to 35% of all the public methods offered by the java.base module are
overloaded. This is a considerable number. 41 methods are overloaded in subclasses, which is an
indication of the presence of alternate features that need additional or potentially a different set of
parameters. 36 overloaded methods are deprecated, which means that potentially due to evolution
they had to be replaced by other operations with different parameters.

2Since the since attribute for @Deprecatedwas only introduced with Java 9, the earliest value retrieved is version
9.

3If a method does not have this information, we assumed that it was introduced in the same version as the class,
which is provided with the @since tag in the Javadoc information of the class.
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Table 8.1: Gathered Data of the java.base Module

Module java.base

Number of public classes 1104

Number of public methods 11720

Number of overloaded methods 4072

Number of methods overloaded in subclasses 41

Number of deprecated methods 138

Number of overloaded methods that are deprecated 36

We therefore examined the overloaded methods in more detail, looking at each group of over-
loaded methods. A group consists of all methods of the same name in the same class. Table 8.2
shows the results of our investigation.

Table 8.2: Gathered Data of All Method Groups of the java.base Module

Module java.base

Number of method groups 1488

Minimum group size 2

Maximum group size 20

Average group size 2.74

Number of groups with a deprecated method 21

Number of groups where a method was introduced in a later
version

403

Number of groups where a deprecated method exists and a method
was introduced (potentially replacing the deprecated method)

10

There were a total of 1488 groups of overloaded methods. 403 of them, i.e., 27%, contained
methods that were introduced over time in later versions of Java. Again, some of those methods
could represent situations in which new features were introduced that required different parame-
ters. 21 of those groups had a deprecated method in them, and for 10 of those new methods were
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introduced at the same time. These could represent situations in which new features were intro-
duced, and as a result, methods required a new set of parameters to be able to continue to provide
their functionality in the presence of the new feature.

We further manually searched the Java base module to find situations other than collections
where signature extension could be helpful.

8.4.1.1 Adding Optional Functionality

With Java 1.4, support for different character encodings other than the platform’s default encoding
was added as a new feature through the additional class java.nio.charset.Charset. As a
result, several methods across the API were added to take a Charset as an argument, or alterna-
tively a String argument designating the name of the character set, e.g., UTF-8. For example, in
addition to the method java.lang.String.getBytes(), java.lang.String.get-
Bytes(Charset) as well as java.lang.String.getBytes(String)were added. An-
other example affected by this change is the method encode of java.net.URLEncoder (the
same applies to decode of URLDecoder). In this case, the initial method encode(String)
was deprecated and replaced with encode(String, String). In Java 10, the method en-
code(String, Charset)was added4. In total, due to the introduction of the character encod-
ing feature in Java 1.4, there are now 25 overloaded methods with an additional Charset argument.

Similarly, Java 1.4 introduced a new abstract class java.net.SocketAddress with one
subclass java.net.InetSocketAddress which implements an IP socket address consist-
ing of an IP address and port. This was added alongside the existing java.net.InetAddress
(which only consists of the IP address). When dealing with sockets, methods requiring an Inet-
Address therefore also need an argument for the port. As a result, through the addition of
SocketAddress, those methods (such as in the classes DatagramPacket, Datagram-
Socket, and MulticastSocket of the java.net package) had to be overloaded with the al-
ternative functionality. Interestingly, in java.net.Socket and java.net.ServerSocket,
instead of overloading the existing constructors with a SocketAddress argument, each class has
a constructor to create an unbound socket and an additional method accepting a SocketAddress,
which needs to be called after instantiation.

We located another additional optional functionality in classes that write to files. The two
classes java.io.FileWriter and java.io.FileOutputStream allow optionally to ap-
pend to an existing file instead of writing from the beginning. This is specified using an additional
boolean argument in the respective overloaded constructor. What is interesting to note is that
FileWriter does not have an overloaded constructor allowing the character set to be speci-

4See https://bugs.java.com/bugdatabase/view_bug.do?bug_id=8178081 and
https://bugs.java.com/bugdatabase/view_bug.do?bug_id=8183743
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fied (see above). This makes it impossible to use both new features simultaneously, i.e., have a
file writer that uses a specific character set and appends to an existing file. The creators of the
Apache Commons IO library5, which supplies input/output utilities, noticed this lack and provide
a class org.apache.commons.io.output.FileWriterWithEncoding to accomplish
this, i.e., it contains both optional functionalities to specify a custom character set and appending
to a file.

8.4.1.2 Providing a Common Interface for Alternative Implementations

In Java, a design decision was made to use two disjoint class hierarchies for maps (Map) and
collections (Collection). One of the reasons being that forcing maps to be collections or vice
versa “[...] leads to an unnatural interface”6. As described in Section 8.3.1, this is problematic
when collections should be treated in a uniform way. Furthermore, simply iterating over a map is
not directly possible. Instead, the user needs to make the explicit choice to iterate over the key,
value or entry set. The entries itself are key-value pairs that are exposed to the user. This can lead
to inefficiencies when a user is not aware of this particularity, and writes code that iterates over the
keys, only to then retrieve the corresponding value for each iteration step using the get(key)
method.

In contrast, C# only uses one hierarchy, i.e., Collection, that also contains maps (Dic-
tionary). However, because a collection is generic and typed to contain elements E, for maps
the type E is a KeyValuePair, where each instance provides an entry of the map with a key
and its value. Because the add operation is defined in the top-level class Collection, the user
can call it also on a map, but needs to provide an instance of a KeyValuePair as a parameter.
In order to help the user who does not need the additional layer of abstraction and hence does not
mind writing dictionary-specific code, an additional, more convenient method (add(K, V)) is
defined in Dictionary that transparently takes care of creating a KeyValuePair instance for
the user.

8.4.2 Exploring Workarounds in Programming Languages
Looking at the Java Platform API confirmed the occurrence of the first two difficulties outlined
in Section 8.3. In order to overcome these at the programming language level, there exist certain
workarounds.

5See https://commons.apache.org/proper/commons-io/.
6http://docs.oracle.com/javase/8/docs/technotes/guides/collections/

designfaq.html#a14
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8.4.2.1 Adding Additional Functionality

In the situation where a reusable unit is already being used and additional functionality is added,
the goal is often to keep binary compatibility [51]. Guidelines for defensive interface evolution sug-
gest several ways to achieve minimal impact on the user in addition to the basic strategy outlined
above [35]. Among them are defender methods (also known as virtual extension methods) intro-
duced in Java 8 [46], abstract classes with default implementations, or Eclipse’s way of specifying
additional interfaces that extend the existing interface [52]. Other workarounds that are suggested
for API evolution within Eclipse are marking the old method as deprecated and forwarding the call
to the new method in its implementation.

We also observed an interesting case in the Android Notifications API (see Chapter 6) where no-
tification channels were introduced as a new (mandatory) feature to the API. Beginning with its in-
troduction, applications using notifications are required to create a notification channel and specify
it when building notifications. To enforce this, the existing constructor of NotificationCom-
pat.Builder was augmented with an additional argument specifying the channel ID. The ex-
isting constructor was left in the code base and marked as deprecated. In the resulting concern
interface of Android Notifications, the new constructor is located within the Notification Channel
feature. If a user chooses this feature, the resulting API, however, provides both constructors. The
user therefore still sees and gets access to both versions of the constructor. This requires additional
cognitive effort and can cause inconsistent usage of the API.

8.4.2.2 Providing a Callback Interface that fits all Reuse Contexts

The third problem is a problem developers commonly face. The query “pass extra argument to
callback function” on Stack Overflow results in 259 questions (or their answers) being matched.
Various programming languages provide workarounds to overcome the difficulty of the user to
access extra information within a callback. Here is a non-exhaustive list of techniques that we have
observed at the code level to deal with the situation, some depending on specific implementation
language features.

1. The user can define a custom interface that contains a method with the additional parameters.
The user then implements the original interface, which when invoked determines the value
for the additional parameters and forwards the call to the custom interface with the additional
arguments7.

2. When a programming language supports anonymous inner classes, the user can declare an
7This technique is illustrated in the Android example XYZTouristAttractions in the

AttractionListFragment Java class using the custom ItemClickListener interface [112], for ex-
ample.
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operation with parameters that hold the additional information. When called, the method
creates an anonymous instance of the callback interface and returns it, which can then be
registered with the framework. When the callback is received, the additional parameters of
the operation are accessible from the anonymous inner class8.

3. In Python, lambdas, partial functions [128], or function decorators [115] may be used to
augment framework-defined callbacks with additional parameters.

4. In JavaScript, it is possible to call a function with more arguments than defined in its sig-
nature. Inside the function, arguments can be accessed using the arguments object [121].
This could help the user to access additional arguments in a callback, but the designer would
also have to pass additional values in the call. Alternatively, it is possible to bind additional
parameters to a function using the bind function [56, 76].

5. Similarly, in C++, a bind method was introduced in C++11 [110] and a separate library
called boost::bind from the C++ collection of libraries called boost also provides a bind
method [30, 88]. They allow a developer to create a new function pointer to be created with
the original function’s arguments bound or rearranged, and also to add additional parameters,
if needed.

8.5 Summary
This chapter discussed the finality of method signatures once they are defined. We identified four
difficulties that are caused by the finality of method signatures and outlined them with brief exam-
ples. The difficult situations affect both the designer of a reusable concern and the user of a reusable
concern. To validate that this is indeed a problem on the implementation level, we conducted an
empirical study on the Java Platform API. This API has evolved over a long period of time and we
found large numbers of overloaded (35%) and deprecated methods. We further studied overloaded
methods by grouping methods by name and found evidence for the first two difficulties—adding
optional functionality and defining a common interface for alternative implementations. Further-
more, we reported on workarounds in several programming languages to overcome the difficulty
of flexible callback interfaces. In the next chapter we propose a Signature Extension approach that
helps to overcome these difficult situations.

8This technique is illustrated in the Android example XYZTouristAttractions in the
AttractionsGridPagerAdapter Java class [113], for example.
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The Signature Extension Approach

The previous chapter discussed the four difficult situations in detail and showed evidence of these
at the implementation and modelling level. In this chapter we present an approach that improves
reuse support by addressing the difficulties related to the finality of signature declarations. We
refer to the approach as signature extension, because it allows the signature of an operation to be
extended in a similar way as classes can be extended. We first describe in Section 9.1 how in our
approach both the designer and the user can structurally extend signatures by declaring additional
parameters. We then outline how we allow the designer and the user to specify extended behaviour
that can process the additional parameter. In Section 9.2 we detail how class diagrams as defined in
the RAM language in CORE is extended with signature extension support and Section 9.3 explains
how the structural composition of class diagrams is updated. Section 9.4 discusses related work.
The chapter then concludes with a summary in Section 9.5.

9.1 Requirements for Extending Signatures
This section describes first the requirements to extend signatures structurally that allows both a
designer and user to structurally extend signatures by declaring additional parameters. We then de-
scribe the requirements to specify extended behaviour to support processing additional parameters
when extending signatures structurally.

9.1.1 Extending Signatures Structurally
The designer of a reusable unit knows the design details of every optional or alternative feature
encapsulated by the reusable unit. Her goal is to define signatures that provide a common interface
for several variants, and then separately specify for a specific variant any additional information
that might be needed. In order to support this, our approach proposes the following:

• The number of parameters of a method signature within a reusable unit is not set in stone.
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• It is possible for the designer of a reusable unit to incrementally extend a method signature
by adding additional parameters to it.

The user of a reusable unit on the other hand is agnostic about the implementation details of the
unit (information hiding) and is only presented with the interface of the unit of reuse. To address
the case where a user needs additional application-specific information from the reusable unit to
implement a callback behaviour, our approach proposes the following:

• The designer can prepare the design such that signatures can be extended by users of the
reusable unit.

• The user of a reusable unit may then add application-specific parameters to such a signature
defined by the reusable unit when implementing reuse-context-specific callbacks requiring
additional information to process.

In general, we observe two kinds of callbacks in terms of control flow. In the first situation, an op-
eration of a reusable unit is invoked and in turn directly causes invocation(s) to the callback method.
For example, in the example provided in Section 8.3.3, the estimateTotalAllocationCost
operation directly calls the estimateAllocationCost operation of Resource. In the sec-
ond situation, the callback occurs due to an event in the environment, i.e., it is not triggered by the
user of the reusable unit. For example, listeners are usually registered when setting up an applica-
tion, and the callbacks are triggered (indirectly) by the end user of the application, e.g., by clicking
on a button.

We therefore propose that a designer of a reusable concern can explicitly declare a signa-
ture that extends another signature with additional parameters within the same concern. This ex-
plicit declaration distinguishes a signature extension from declaring a new, additional overloaded
method. The extending signature can declare any number of additional parameters and may repeat
the declaration of parameters already declared in the extended signature for convenience, if appro-
priate. In this case, existing parameters are repeated and mapped to the parameters of the extended
method. Providing an explicit mapping for parameters also allows the designer to reorder parame-
ters, if desired. Any unmapped parameter is automatically considered an additional parameter.

The user on the other hand should not be allowed to extend a signature from a reused concern
since this would require the user to know the internals of the reused concern. The designer, how-
ever, can prepare the design for extension in the case where callback signatures need to be provided
by the user.
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9.1.2 Extending Signatures Behaviourally
The requirements for specifying the behaviour to deal with additional parameters introduced by
signature extensions are very different for designers and for users. The designer, as the expert of
the reusable unit, knows the detailed design of all variants that the concern offers, and can therefore
add new, detailed behaviour that deals with the additional information, but also change the existing
behaviour. She needs to be able to:

• Specify behaviour that defines what is done with the additional parameter(s) within an ex-
tended method, in case the existing behaviour is not affected at all, or

• specify how to adjust the existing behaviour when additional parameters are present. This
can involve manipulating the return value of the original behaviour.

Also, whenever a method inside the unit of reuse calls a method that is potentially extended, she
needs to be able to:

• Specify how to determine the value for the new parameters in all locations where an extended
method is invoked. In some cases, she might simply want to delegate the responsibility for
determining the additional parameter value further. She can accomplish this by extending
the signature of the methods that call the extended method accordingly.

The user, however, does not know and should not have to deal with the implementation details of
the reusable unit. Because the designer planned for the signature extension, he only has to focus
on mapping to his own context and, if necessary, provide the callback value(s) to the reusable unit
as intended by the designer.

Support for structural signature extension significantly increases the power of abstraction of-
fered by signatures, and hence has a direct impact on the concernification of frameworks and their
APIs presented in the first part of this thesis. Hence, we implemented support for structural signa-
ture extension within TouchCORE as outlined above and detailed in the following section. Support
for behavioural signature extension does not have a direct impact on concernification, involves
aspect-oriented sequence diagram composition and therefore is out of the scope of this thesis. We
will therefore only briefly outline how behavioural signature extension support can be added to
TouchCORE at the end of this chapter.

9.2 Adding Structural Signature Extension Support to Class
Diagrams

The signature extension approach should be applicable to any software development language
that uses signatures to define interfaces. The approach allows a designer to incrementally define
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Figure 9.1: Class Diagram Metamodel Excerpt for Mappings and Classes

signatures, as well as use partially defined signatures before all extensions are known. We show
how the class diagrams in CORE is extended with support for structural extension of operation
signatures. The class diagrams are defined in the Reusable Aspect Models (RAM) language and
are based on UML class diagrams [81].

RAM extends the CORE metamodel (see Section 2.4.5 and Section 2.5) and provides concrete
COREMapping sub-classes for mapping specific types. It does so to put them into a containment
hierarchy corresponding to the containment of the elements, i.e., an OperationMapping is
contained within a ClassifierMapping to map operations of a class that is mapped. The
RAM metamodel therefore already provides mappings for operations. Furthermore, each concrete
mapping class restricts the mappable types for the mapping to their respective type in the class
diagram (i.e., ClassifierMapping maps Classifier and so on).

However, support for mapping parameters is missing and needs to be added. As enforced by the
super-class CORELink, the mappable elements need to be a sub-class of COREModelElement.
Therefore, to introduce mappings for parameters, a Parameter itself needs to be a sub-class
of COREModelElement. Consequently, this then allows the introduction of ParameterMap-
ping. Figure 9.1 shows the excerpt from the class diagram metamodel with the new Parameter-

Mapping class and the new super-class for Parameter. New or updated classes are shown in
white whereas existing untouched classes are shown in grey. New relationships are shown in black
to distinguish them from the existing ones (shown in grey).

By inheriting Parameter from COREModelElement parameters now also have partiality
and mapping cardinalities (see Section 2.5.4). This is enough to provide full support for the re-
quirements set out in the previous section. The designer can now specify an operation signature
and add a partial parameter with a mapping cardinality of {p=0..*}. If the type of the parameter
does not matter, e.g., because the current model itself does not make use of the data, the type of the
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Figure 9.2: The Updated Structural Design Model of the Observer Concern with Support for Sig-
nature Extension

parameter can be set to the so-called any type. This type is graphically represented with an asterisk
(’*’) and is used, for example, in the Observer design as the return type of the partial modify
operation (see Section 2.5). If the parameter is required to have certain operations that can be
called, the parameter type can be set to another partial class which defines the required (partial)
operations. If within the design there is another operation that is called by the operation with the
extended signature, and the designer intends to pass the additional parameters along in that call,
the designer can add a partial parameter to this operation as well. The cardinality however depends
on how many parameters the first operation has. Therefore, the mapping cardinality refers to its
cardinality: {p}.

To illustrate this we consider again the Observer concern, which was used as an example in
the background chapter (see Section 2.5) along with the mapping cardinalities in Figure 2.16 on
page 26. In the original design the complete Subject instance is passed to registered observers as
a parameter of the update operation. Assuming the designer wants to only send the updated state
of the subject that has been modified instead of the entire subject, using the signature extension
support, she could add a partial parameter |p to modify that will then be passed to the update
operation. Figure 9.2 shows the updated structural design. The mapping cardinality of update’s
parameter is dependent on the cardinality {p} of the parameter of modify. The same applies to
the partial parameter type class PType, which ensures that the parameter type of both operations
is the same.

A possible mapping for a reuse of this Observer in the context of a bank application with
accounts is shown in Listing 9.1.

When mapping an operation in an extending model, the parameters that are used both in the ex-
tended and in the extending signature need to be mapped. By mapping the operations and declaring
additional parameter(s), the designer explicitly states that the original signature is extended.

Partial parameters with mapping cardinalities and parameter mappings can handle the first two
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Listing 9.1 Example Mappings when Reusing Observer
|Subject ÝÑ Account
|modify ÝÑ setBalance

|p ÝÑ newBalance
|PType<newBalance> ÝÑ double
|Observer ÝÑ AccountWindow
|update<setBalance> ÝÑ balanceUpdated
|p<newBalance> ÝÑ newBalance

difficulties for designers (common high-level interface and optional functionality). We now look in
more detail at how the other two difficulties—extending a callback interface and delaying design
decisions—can be supported with signature extension.

Extending a Callback Interface As discussed earlier, the designer of a reusable unit knows the
details of the design and therefore only the designer is aware of how to correctly handle additional
parameters for callbacks. If the callback is executed within the control flow of an operation of the
reusable unit that the user invokes explicitly, then the designer can include in her design of the
operation the possibility of adding additional parameters. In the case where a callback happens
at a point during execution that is not directly influenced by the user calling an operation of the
framework, the designer can provide means to provide the value for the callback in advance. To
support setting callback values, the designer needs to provide a way to store the callback value so
that when the callback operation is invoked, the value can be accessed and passed as an argument.

In both cases, the designer must prepare her design to allow the extension. This makes sense,
as the details of the design of the reusable unit are hidden from the user. Hence the user cannot
specify the behaviour that deals with the additional parameter.

Figure 9.3 shows another variant of the Observer design pattern. The notifyObservers
operation calls the |update operation of all the registered observers, but in this design the user
can customize the signature of the update operation with one or several additional parameters.
With the public operation setCallbackValue the user can explicitly set different parameter
values for each registered observer. The subject stores these values in a qualified association with
the observer as the key. Before invoking the update operation on an observer, the stored parame-
ter value for that observer is read from this data structure and passed as an actual parameter to the
call.

Delaying Design Decisions In CORE, when reusing another concern, automated information
hiding reduces the visibility of any public elements provided by the reused concern in order to
hide any implementation details to the next level up. With delaying decisions (see Section 2.4.4),
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~ void addObserver(Observer o)
~ void removeObserver(Observer o)
+ void setCallbackValue(Observer o, |PType value)
~ void notifyObservers()

 
|Subject

+ void startObserving(|Subject s)
+ void stopObserving()
~ void |update(|PType |p {p=0..*} )

 
Observer

observers

0..*

{1}

~ void |update(|PType |p)
 

|Observer {1..*}

 
 

|PType {p}
1

O
bserver

{p}

Figure 9.3: Supporting Custom Callback Values in the Observer

however, some decisions—feature selections—can be left undecided, and hence re-exposed, which
allows the user at the next level up to make the best feature selection for his reuse context. For ex-
ample, when reusing the Association concern, the designer of a reusable concern might decide
to delay the decision of which concrete ordered collection to choose. In general, this works very
well when the signatures are final (as is the case for ordered collections). If the final signature de-
pends on the final feature selection, this poses a problem. For example, for key-indexed collections,
choosing the Database feature requires an additional parameter for most operations that identifies
the database connection.

When delaying the decision, the designer—who is the user of the reusable unit—can already
use the common, high-level interface to complete her design. It is the responsibility of the designer
who makes the choice to delay the decision to account for potential changes in the signature.
Hence, the designer must test the outcome of the individual final selections to verify that the re-
exposed features work with the design. In the case that a re-exposed feature changes a signature,
due to the information hiding and the potential impact it has on the existing design, the designer
needs to elaborate a design that supports the augmented signature. To do this, the designer can,
for example, elaborate an optional feature that provides the design changes necessary for dealing
with the extended signature of the reusable unit. The optional feature extends the existing reuse
and selects the corresponding feature.
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9.3 Structural Composition of Signatures
This section discusses how the existing structural composition algorithm is updated to support deal-
ing with signature extension and the updated metamodel. The composition algorithm, also called
weaving, is executed to compose models pair-wise when reusing a concern or when composing the
final application.

Generally, in CORE, the philosophy is to only allow additive changes. The RAM class diagram
composition merges mapped elements and copies unmapped elements to the resulting model (see
Section 2.5.5). I.e., when a class from a lower-level model is mapped to a class in a higher-level
model—either within an extension hierarchy or across concern boundaries through a reuse—the
contents of the classes are merged.

During the design, if the designer wishes to use an element defined in another model—either
within the extension hierarchy or from a reused concern—instead of referring to the element di-
rectly, a local copy is created in the current model. A mapping is established between the element
in the other model and the local copy. This marks the element as a reference. I.e., the derived
property isReference of COREModelElement shown in Figure 9.1 is true in such a case.
Because of this, when extending a signature, the already defined parameters of the operation are
part of the extending operation and are therefore mapped.

If a signature is extended by several sibling features, the structural composition needs to merge
the signatures by creating a new operation that has the union of all the parameters. Additional
parameters are added at the position relative to where the extending signature introduces them.

In order to give a designer the ability to prepare a signature for extension, we allow the spec-
ification of a partial parameter that is optional to be mapped. The lower bound of its mapping
cardinality is {0}. Not mapping it in this case means that the user does not need additional param-
eters. In that case, the composition needs to ignore the partial parameter when merging signatures.

In addition to updating the actual composition algorithm, the data structure that keeps track of
which model elements have been merged by the structural weaver also needed updating to keep
track of merged and added parameters. This is because in RAM, the message views depend on the
structural view [97]. The behavioural composition algorithm needs the data structure produced by
the structural weaver containing the mapping from the original element to the target (composed)
element in order to function correctly [101].

9.4 Related Work
As already mentioned in Section 8.4.2 of the previous chapter, there are many programming lan-
guages that provide features that make it possible to define methods with varying signatures (de-
fault values for parameters, variadic functions (Go [116] and Python [87]), the JavaScript bind
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feature, C++ boost, etc.). However, these features are limited in their use. For example, for vari-
adic functions, all parameters have to use the same type. A parameter of type Object can be
declared, but these instances then need to be downcast by the user. The same inconvenience occurs
when the designer adds a single dummy object parameter to the signature that can be customized
by the user.

Furthermore, a workaround that sets a custom callback value can be observed in AWT/Swing
of Java. In order to facilitate using the same listener instance for multiple events/actions, com-
ponents that fire an ActionEvent to registered ActionListeners provide a way to set an
action command [83]. The action command is a string that is set using the setActionCommand
method when building the visual components. When the actionPerformed callback method
of a listener is invoked, the ActionEvent instance argument provides access to the action com-
mand. However, this only serves the purpose of understanding which action was invoked. The user
has no means to provide any additional callback values. Furthermore, when an action command is
not needed, the caller still has to pass null as the action command.

Some of the techniques described in Section 8.4.2, such as Python’s partial function or the
bind function of C++ and JavaScript, allow a developer to bind additional parameters to a method.
These techniques make use of partial application which “refers to the process of fixing a number of
arguments to a function, producing another function of smaller arity” [125]. I.e., the method with
the greater number of arguments is the custom callback method desired by the user, the additional
arguments are bound to certain values and the resulting method is the callback method that has
the required signature. However, the user has to be aware of this advanced feature and apply it
manually. The Chromium developers, the open source project behind the Chrome browser, also
faced the need to support custom callback values [114]. They implemented their own Bind function
with type-safety.

To the best of our knowledge none of these techniques make it straightforward for the designer
of a reusable unit to express how the parameters in a signature of a method depend on the features
the user of the reusable unit wants to use. Our signature extension approach should be applicable
to any software development language that uses signatures to define interfaces. It is independent
of the underlying programming language. Furthermore, signature extension makes it possible for
the designer to specify how to deal with the additional parameters behaviourally.

The proposed signature extension approach has lots of similarities with aspect-oriented ap-
proaches [38, 59]. However, AspectJ [58], an aspect-oriented extension of Java, does not allow a
programmer to change the signature of an existing method using an aspect. It is not even possible to
add a new checked exception to the signature [62]. AspectJ provides behavioural extension points,
i.e., it is possible to declare a before, after or around execution advice that augments a method with
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additional behaviour that executes either before the main body of the method executes, or after, or
instead of it. We are proposing a similar mechanism to specify additional behaviour to deal with
additional parameters.

9.5 Summary
This chapter described the signature extension approach and its integration into the class diagrams
of the RAM language. The designer of a reusable unit is the expert with detailed knowledge of the
unit’s implementation. As such, it is the designer who knows best which signatures need extensions
for which features, and how to extend the signatures. We argue that in order for extensions to be
used by the user of a reusable unit, the designer of the reusable unit must prepare for the extension.
To accomplish this, we allow the definition of partial parameters with a minimum mapping cardi-
nality of 0. If a user does not require additional parameters, they do not need to be mapped and
will not appear in the final signature. A mapping cardinality can be referred to in another model
element. This ensures that dependencies within operation signatures can be handled by enforcing
that such parameters are mapped.

We showed that with the added support in the metamodel, the first two difficulties can be solved
for the designer. In order for a user to be able to extend a callback interface, the designer has to
prepare the extension. To accomplish this, she might need to include structure and behaviour that
deals with the storage of additional values so they can be accessed when the callback is involved.
For delaying of decisions, we argue that the designer needs to prepare this as well in the case
where a re-exposed feature affects the signature of an operation. This makes sense, because due to
information hiding the user does not see and should not be bothered by the implementation details
of the reusable unit. In this situation, the designer that wants to delay a decision needs to elaborate
an optional feature that provides the required design to support a changing signature for a specific
feature selection.

We showed how the metamodel of class diagrams in RAM had to be changed to support the
structural definition of signature extensions. We explained how the structural composition algo-
rithm was changed.

Adding behavioural support for signature extension is beyond the scope for this thesis, and
therefore only briefly outlined here. In fact, two different requirements are necessary for be-
havioural signature extension that are not solely related to signature extension but more promi-
nently expose a lack of power in the way advices and pointcuts can currently be expressed in RAM.
RAM already has support for specifying partial behaviour. In [97] the author specified a metamodel
for message views (based on UML sequence diagrams) with support for partial behaviour. Aspect
message views (see Section 2.5.2) are used to specify an advice to augment behaviour of partial
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operations. Currently, the supported pointcuts in RAM are limited. The only supported pointcut is
the execution pointcut, i.e., the execution of an operation can be augmented with behaviour that
should be executed before, after, or around the original behaviour. To properly support signature
extension, calls within an execution need to be matched (call pointcut) such that existing calls to
operations with extended signatures can be augmented to add behaviour that deals with the new
parameters that are required. This could be done by adding behaviour before the call to retrieve a
value, or by passing in an argument of the operation whose behaviour is being defined. In addition,
it might be necessary to manipulate the return value of the original behaviour. Currently, this is not
possible, and poses a problem when behaviour needs to do something with the return value.

Furthermore, the composing of behaviour then requires to match the call pointcuts for ex-
tended signatures and update the call with the actual arguments for additional parameters. It is also
possible that additional behaviour needs to be added before the call, e.g., to retrieve or compute
the argument for a parameter. In that case, this additional behaviour needs to be woven into the
message view as well.

With the support for signature extension, we can now design concerns specifying a common
high-level interface. To evaluate whether the approach does indeed overcome the difficulties dis-
cussed in Chapter 8 we show in the next chapter how the Association and Resource Management
concerns can be re-designed and reused.
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Case Studies

In Chapter 8 we discussed how signatures are final and how this causes problematic situations in
the context of reuse. Chapter 9 proposed the signature extension approach to overcome the four
difficulties we identified. In this chapter, we revisit the two concerns mentioned earlier to showcase
the difficulties—Association and Resource Management. A fairly common validation approach
in the modelling and software engineering communities are case studies. To determine whether
the signature extension approach presented in Chapter 9 overcomes the difficulties identified in
Chapter 8, we present in this chapter prima facie evidence by modelling the two concerns using
the signature extension approach.

Section 10.1 presents a redesign of the Association concern using the signature extension ap-
proach, which makes it possible to define a common, high-level interface for adding and removing
elements from alternative collection data structures. Section 10.2 revisits the Resource Manage-
ment concern, presenting in detail the base design of resource management. Subsection 10.2.1
shows the design of the Capability feature which adds new functionality that requires extending
some of the signatures defined in the base. Subsection 10.2.2 showcases the Allocation Cost fea-
ture that exemplifies how a callback interface that fits all reuse contexts can be provided. Finally,
an example for delaying of decisions with non-final signatures is shown in Subsection 10.2.3. Sec-
tion 10.3 concludes this chapter with a summary.

10.1 Association Concern Design with Signature Extension
In CORE, Association is a low-level concern that was designed to abstract from the various Java
Collection and Map implementations and to provide the different variations, impacts and design
models to support associations in a reusable way [16]. It represents a concernification of Java
collections and maps including a significant amount of “glue code”. Association abstracts Java’s
collection and map implementation classes and organizes them within a feature model.

As described in Section 8.3.1, higher-level features such as Many (describing at a high level
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Many

DatabaseHashSet TreeSetArrayList LinkedList HashMap

UnorderedOrdered KeyIndexed

add(Element)
remove(Element)

addToIndex(int, Element) put(Key, Value)
remove(Key, Value)

store(Key, Value, DBConnector)
remove(Key, Value, DBConnector)

Figure 10.1: Association Signature Extensions

the common design of a to-many association) can not introduce a common interface for all sub-
sequent features due to the limitation of the finality of signatures. Because of that limitation, the
Association concern was originally designed in [16] by introducing the operations lower within the
feature hierarchy. For the designer of the Association concern this makes the design activity more
tedious, as common functionality needs to be repeated. For a user of the Association concern that
is designing some other reusable concern this also has consequences. Since the reuse context of the
reusable concern that is being designed is not known, it is difficult to choose the specific concrete
collection class. The best choice depends on the final application context where the non-functional
properties are known. Ideally, the designer would like to delay the decision, but thus far it was not
possible to choose Many, e.g., while delaying the decision of the concrete type, and at the same
time already start using the common interface of Many, e.g., to add elements.

We re-designed Association using the signature extension support. Figure 10.1 shows the Many
branch of the Association feature model. Two operations are now first introduced in the realization
design model of the Many feature defining a common signature for adding and removing elements:
add(Element) and remove(Element).

KeyIndexed then extends the signature of the add and remove operations to add a parameter
for the key. This means that the Element in KeyIndexed represents the value. Furthermore, the
Database feature further extends the two operations to add a third parameter for the database
connection.

The realization model of the Ordered feature extends the signature of the add operation to add
a parameter for the index at which to add the element to.

Listing 10.1 shows the mappings of KeyIndexed, Database, and Ordered for the add operation
and the repeated parameters. I.e., the left-hand side of the mappings shows the structural element
from the extended model, the right-hand side shows the element of the extending model. The
mappings reflect the hierarchy of their elements by indentation, i.e., class, operation, and then
parameter.
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Listing 10.1 Signature Extension Mappings of the add Operation
Many is extended by KeyIndexed

add(Element element) ÝÑ put(Key key, Value value)
Element element ÝÑ Value value

KeyIndexed is extended by Database
put(Key key, Value value) ÝÑ

store(Key key, Value value, DBConnector db)
Key key ÝÑ Key key
Value value ÝÑ Value value

Many is extended by Ordered
add(Element element) ÝÑ addToIndex(int i, Element element)

Element element ÝÑ Element element

~ boolean isAllocated()
~ setAllocated(boolean)
+ boolean isAvailable()

- allocated: boolean
|Resource

+ List<|Resource> findAvailableResources(int)
 

ResourceManager

+ allocate(|Resource)
 

|Task0..*
resources

0..*   resources

Figure 10.2: Resource Management Base Design

We will show the reuse of this Association concern within the Resource Management concern
in the following section to show how delaying of decisions is supported by signature extension.

10.2 Resource Management: Running Example Revisited
In Section 8.3 we discussed the difficult situations due to the finality of signature declarations
using the example of a Resource Management. Figure 10.2 shows the base structural design of the
Resource Management concern. The base model provides the ability to have tasks that can allocate
resources, and a resource manager to manage all resources. To aid the reader in understanding of
the signature extensions that follow, we also show the behaviour related to the base design. This
provides a better understanding of the interactions between the different classes.

Figure 10.3 specifies the behaviour of checking whether a resource is available. A resource is
available if it is currently not allocated.
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behaviour Resource.isAvailable()

isAvailable()
: |Resource

!result
             result := isAllocated()

Figure 10.3: Behaviour for Checking the Availability of a Resource

behaviour Task.allocate(Resource resource)

allocate(|Resource resource)
: |Task

resource: |Resourceavailable := isAvailable()

opt [available]

setAllocated(true)

resources: List
add(resource)

Figure 10.4: Behaviour for Allocating a Resource to a Task

When a resource is to be allocated to a task, the resource can not already be allocated. Fig-
ure 10.4 shows the behaviour of Task.allocate(Resource) which invokes the isAvail-
able() operation on the given resource. If the resource is available, it is marked as allocated and
associated with the task.

The ResourceManager manages all resources and provides an operation to find a given
number of available resources. Figure 10.5 shows the corresponding behaviour. The Resource-
Manager loops through all resources and invokes isAvailable() on each resource that it
considers until it finds the required number of resources (or reaches the end of the collection).

10.2.1 Capability Design Extension
The designer intends to provide an optional feature that allows users to differentiate resources
based on capabilities. In order to support this, the desired capability for which resources are sought
for, or need to be allocated, has to be specified. I.e., some of the operation signatures of the base
design of Resource Management need an additional parameter to identify this capability. Because
the designer is aware of the internals of the base design, she can directly extend the signatures.
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behaviour ResourceManager.findAvailableResources(int)

findAvailableResources(int number)

: ResourceManager

loop [|Resource resource in resources]

result := new list

result

resource: |Resourceavailable := isAvailable()

opt [available]

result: Listadd(resource)

opt [result.size() == number]
result

Figure 10.5: Behaviour for Finding Available Resources

The realization model for the Capability feature extends resources with capabilities. It allows
a resource to be allocated to a task based on a specific capability. When a user chooses this vari-
ant, several of the existing operation signatures defined for general Resource Management are
extended. This is because allocate needs an additional parameter identifying the capability. In
turn, allocate calls isAvailable on the resource. Figure 10.6 shows the structural design
of Capability with the additional operations.

In addition to defining the operations, the appropriate mappings need to be provided. List-
ing 10.2 shows the mappings specified for the Capability feature extending the design of the base
Resource Management.

10.2.2 Allocation Cost Design Extension
The Allocation Cost feature offers the ability to consider individual resource allocation cost. To
accomplish this, it adds the estimateTotalAllocationCost operation to the Resource-
Manager which can determine the total cost of allocation for the given list of resources. Since the
actual resources and their properties are unknown for the designer of the Resource Management
concern, a partial operation estimateAllocationCost is introduced. This operation needs
to be provided by the user for each different resource. Figure 10.7 shows the structural design of
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+ boolean isAvailable(|Capability capability)
- boolean hasCapability(|Capability capability)

 
|Resource

+ List<Resource> findAvailableResources(int number, |Capability capability)
ResourceManager

+ allocate(|Capability capability, |Resource resource)
 

|Task

 
 

|Capability0..*
capabilities

Figure 10.6: Capability Structural Design

+ double |estimateAllocationCost()
 

|Resource

+ double estimateTotalAllocationCost(List<|Resource> resources)
ResourceManager

Figure 10.7: Allocation Cost Structural Design

Allocation Cost.
Figure 10.8 provides the details of the behaviour for estimating the total allocation cost. The

behaviour iterates through all the given resources and invokes the callback operation on each re-
source. However, the allocation cost of a resource might depend on the specific context the resource
is used in. For example, in the context of a Crisis Management System (CMS), workers (the re-
sources) are allocated to missions (the tasks). Determining the allocation cost of a specific worker
to a mission depends on the distance between the worker’s current location and the location of the
mission. As we described in Section 8.3.3, while the current location of the worker is accessible
from within the resource, the location of the mission is not. To provide a flexible design that sup-
ports such use cases, the designer of Resource Management can prepare for the extension of the
signature of the estimateAllocationCost callback with additional parameters.

Figure 10.9 shows the updated structural design for the Allocation Cost feature. The designer
introduced a partial parameter in the Resource.estimateAllocationCost operation with
a mapping cardinality multiplicity of 0..*. Because ResourceManager.estimateTotal-
AllocationCost calls this method, it also needs to be extended with a partial parameter whose
mapping cardinality references that of the callback method. Any additional parameter passed into
estimateTotalAllocationCost can then simply be forwarded to estimateAlloca-

tionCost. This is sufficient in this case because the user invokes the estimateTotalAllo-
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Listing 10.2 Mappings of the Capability Feature
|Resource ÝÑ |Resource

isAvailable() ÝÑ isAvailable(Capability)

|Task ÝÑ |Task
allocate(|Resource resource) ÝÑ

allocate(|Capability capability, |Resource resource)
resource ÝÑ resource

add(|Resource resource) ÝÑ

add(|Capability capability, |Resource resource)
resource ÝÑ resource

ResourceManager ÝÑ ResourceManager
findAvailableResources(int number) ÝÑ

findAvailableResources(int number, |Capability capability)
number ÝÑ number

cationCost operation, which in turn invokes the callback.

10.2.3 Delaying of Decisions
In order to realize the relationship between tasks and resources, the designer can reuse the As-
sociation concern. Since Resource Management is a reusable concern itself, the designer cannot
determine the most appropriate variant of Association to reuse. This decision depends on the con-
text in which Resource Management will be reused. Therefore, thanks to the changes described in
Section 10.1, the designer can now choose Many, the feature that provides a common, high-level
interface for adding and removing elements. The child features below Many are re-exposed. With
this, the designer can already specify the base design, including the behaviour, by making use of
the add operation when allocating a resource to a task, for example.

The Capability feature, however, requires resources to be allocated for a specific capability.
Therefore, the Capability design model extends the reuse of Association and augments the fea-
ture selection by choosing KeyIndexed. The specific child features of KeyIndexed stay re-exposed,
as the specific data structure to use affects non-functional properties which depends on the reuse
context. This changes the signature of add to require an additional parameter for the key. Sec-
tion 10.2.1 described how the designer delegated this parameter to the callers by extending all
affected operations with relevant invocations.

However, the signature of add is still not final. If a user of Resource Management who chooses
the Capability feature also selects the re-exposed Database feature as the storage structure to keep
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behaviour ResourceManager.estimateTotalAllocationCost(List<Resource>)

estimateTotalAllocationCost(List<|Resource> resources)

: ResourceManager

loop [|Resource resource in resources]

result := 0.0

result

resource: |Resourceresult += |estimateAllocationCost()

Figure 10.8: Behaviour for Finding Available Resources

+ double |estimateAllocationCost(* |addP {p=0..*})
 

|Resource

+ double estimateTotalAllocationCost(List<|Resource> resources, * |addP {p} )
ResourceManager

Figure 10.9: Updated Allocation Cost Structural Design

track of the task-resource mapping, then the signature of add requires an additional third database
connector parameter. As discussed in Section 9.2, the designer of Resource Management has the
knowledge of the internals of this concern and as such knows best how to support this change in
the signature. The designer could choose to not support Database by not re-exposing it. Alterna-
tively, the designer can provide a design model that deals with the re-exposed Database feature.
For example, an additional optional child feature of Capability could offer the database feature.
The designer can then choose to use the same implementation technique that she used for adding
capabilities by adding and passing along the database connector parameter. Alternatively she could
also decide to offer an operation that sets the required DBConnection parameter once during ini-
tialization, for instance, as an operation offered by the ResourceManager, and then use that value
whenever it is needed in calls to the Association concern.

Figure 10.10 shows an example of a structural design for the database support. The signature
of the constructor of ResourceManager is extended with an additional parameter requiring the
DBConnection instance to be provided. The behaviour of Task.allocate(...) can thus
be augmented such that the connection is retrieved from the ResourceManager and passed into
the call to add.

Listing 10.3 provides the mappings between Capability and Database Support.
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+ create(|DBConnection connection)
~ |DBConnection getDBConnection()

ResourceManager

+ allocate(|Capability capability, |Resource resource)
~ add(|Capability capability, |Resource resource, |DBConnection connection)

 
|Task

Figure 10.10: Optional Database Support Structural Design

Listing 10.3 Mappings of the Optional Database Support Feature
ResourceManager ÝÑ ResourceManager
create() ÝÑ create(|DBConnection)

Task ÝÑ Task
add(|Capability, |Resource) ÝÑ

add(|Capability, |Resource, |DBConnection)
capability ÝÑ capability
resource ÝÑ resource

10.2.4 Composed Interface
With the updated design of Resource Management using signature extension support, the usage
interface of the concern now is always perfectly in line with the features that were selected. Fig-
ure 10.11 shows the interface and supporting design structure of Resource Management of different
feature selections: Base, Base + Capability, Base + Cost, Base + Capability + Cost, and Base +
Capability + Database.

10.3 Summary
In this chapter we revisited the examples that exhibited the four difficult situations identified in
Chapter 8. We showed that these difficulties can be overcome with the proposed signature exten-
sion approach. The designer as the expert of a reusable concern with detailed knowledge of the
inner workings can define a common interface for alternative implementations at a high level and
extend the common interface for lower level features with additional parameters if necessary. The
designer is also able to add new functionality that requires additional parameters in signatures.
This ensures that when a user wants to use the additional functionality, the usage interface of the
reusable concern includes the required parameters and hence ensures correct use. In order to allow
a user to have a custom callback interface for any user-specific reuse context, the designer can
prepare for this by making the signature extendable using partial parameters. Furthermore, to deal
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10.3 Summary

with re-exposed features when delaying decisions, the designer needs to prepare any design for
re-exposed features that affect the signatures. The user on the other hand does not need to deal
with the implementation details of the reusable concern and can extend signatures where prepared
by the designer. As such, information hiding is maintained according to the philosophy of CORE.
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11
Conclusions & Future Work

This chapter first summarizes the contributions of this thesis in Section 11.1, followed by a discus-
sion of potential future research avenues in Section 11.2.

11.1 Conclusions
Methodical reuse of software artefacts is considered key to software engineering [65, 70]. Instead
of creating all functionality from scratch, common and recurring functionality is reused. While
there are many frameworks available to be reused at the implementation level, at the modelling
level reuse is not common, which puts modelling at a disadvantage. Furthermore, reuse at the
implementation level is not perfect. Frameworks provide many features in one piece (monolithic
code block) and developers spend a lot of time trying to understand how to use and customize a
framework. In fact, when we posted the invitation for participation for the user study with Android
Notifications some developers confirmed this. Some of the mentioned obstacles were poor docu-
mentation, not clear how to use the API for more advanced scenarios, and that the API was not
working as expected. The last point was especially mentioned in terms of maintaining compatibil-
ity, i.e., when trying to support features on as many platform versions as possible. Some developers
also mentioned that they use an additional framework on top of Android Notifications that aims at
making it easier to create and configure notifications. However, this creates an additional layer of
complexity.

This thesis makes several important contributions towards bridging the gap between the mod-
elling and the programming worlds. Thanks to our proposed concernification and signature exten-
sion approaches, existing functionality encapsulated in libraries and frameworks can not only be
reused at the modelling level, but our proposed, high-level interfaces for frameworks also benefit
the reuse at the implementation level.

Concernification This thesis presented the Concernification approach that applies the principles
of Concern-Oriented Reuse (CORE) to raise the level of abstraction of existing frameworks to the
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modelling level. At the modelling level the benefits of the higher level of abstraction can be ex-
ploited to benefit reuse. A concern interface for a framework formalizes and documents what the
framework provides to the user. This includes the different features and their relationships. Further-
more, the API of the framework is decomposed and the API elements are modularized according
to the features they belong to, effectively reducing the API to the user’s needs. In addition, the
concern interface makes it possible to specify the API elements that need to be customized by the
user, and can contain repetitive “glue code” that is necessary to add to the application in which the
framework is used. We created a concern interface for the Minueto framework with the concernifi-
cation steps we defined. Using the resulting concern interface we showed that for a minimal feature
selection, only 26% of the API elements are exposed to the user. For a newcomer who wants to
write a hello world application, this is a significant reduction in cognitive effort.

Creating a concern interface manually represents a high effort. This thesis proposed an auto-
mated concernification algorithm to help a developer with the initial concern interface creation.
As a preparation for our work on an algorithm to automatically create a concern interface, we
conducted a qualitative study with the two developers of Minueto. As the domain experts of the
framework, they helped us in validating our feature model of Minueto. Additionally, they created
their own feature model of Minueto. This confirmed that there is no one single correct feature
model. It depends on the desired granularity and what one considers a feature. The Minueto de-
velopers also confirmed our intuition of which information of an API to use when determining a
concern interface.

Automated Concernification To support developers in concernifying their framework we de-
signed an algorithm that automatically creates an initial concern interface, which can then be
fine-tuned and adjusted by the developer who is the domain expert. The algorithm exploits the
object-oriented hierarchy of the framework implementation, the cross-references among the API
elements and the way classes are organized in packages and inner classes in an API. In addition,
the algorithm examines the use of the API in code examples that are commonly provided with a
framework. These examples typically show how to use certain features/accomplish a task.

Our algorithm exploits common principles of good API design that we always expect to hold.
We additionally defined hypotheses about the API and the code examples that might not always
hold, but that can improve the result of our algorithm if they do. For example, the code examples do
not always showcase all possible combination of features. If not all combinations are shown, XOR
relationships can not be determined. However, if all possible combinations are shown in the ex-
amples, our algorithm is designed to perform additional processing steps which in this case make
it possible to generate the OR, XOR and cross-tree constraints of the feature model with 100%
accuracy. The algorithm works with a directed acyclic graph (DAG) where the nodes represent po-
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tential features and the edges relationships between them. The example usage is used to put those
API elements together that are used in the same examples. Once the graph is populated with all the
available information, it is simplified in order to retrieve a tree that represents the feature model. As
a result, the automated concernification algorithm produces a concern interface consisting of the
feature model and a design model for each feature containing the corresponding API. To be able to
perform automated concernification on larger frameworks we fully implemented the algorithm on
top of the backend components of the TouchCORE tool. In order to evaluate whether the algorithm
provides an accurate concern interface, we validated the algorithm by applying it to three frame-
works and analyzed the results. The conciseness of results is dependent on the quality of examples
in order to determine which API elements belong to the same feature. More framework APIs need
to be concernified to gather evidence on how the conciseness can be improved. A limitation of the
algorithm is that it currently lacks support for other artefacts and code elements that are typically
used in frameworks, especially those frameworks making use of dependency injection. For exam-
ple, many frameworks make use of XML configurations or annotations. Our algorithm currently
does not consider these and hence does not detect usage of framework API in such a case. Further-
more, the algorithm currently works only on Java. However, the algorithm itself is designed such
that it is independent of a specific language. Other programming languages could be supported by
providing an importer and example parser for that language.

Signature Extension The higher level of abstraction revealed a lack of support for the incremen-
tal refinement of interfaces. By separating an API across features, there are difficult situations—
such as adding optional functionality—that require a signature of a method to be extended with
additional parameters. We identified and discussed in detail four difficult situations that the finality
of method signatures causes. We performed an empirical study on the base module of the Java Plat-
form API and investigated workarounds in programming languages. We found evidence of these
difficulties at the programming level. To overcome these problems at the modelling level, we pre-
sented the signature extension approach. The approach makes it possible to extend the signature
of methods. We extended class diagrams as defined in the Reusable Aspect Models (RAM) lan-
guage of CORE with structural signature extension support. This extension allows a signature to
be incrementally refined based on the features that a user selected. To evaluate whether the signa-
ture extension approach overcomes the identified difficulties, we re-designed two concerns that are
affected by these difficulties. Due to the use of features and aspect-oriented techniques, it would
be difficult to integrate this approach at the programming level. However, the concernification ap-
proach provides a higher level view that helps a user understand what a framework provides. The
support of flexible callback signatures is limited in that the designer needs to prepare for the exten-
sion of callback signatures in the design. This limitation is necessary to maintain the information
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hiding principles.

Summary Overall, the contributions in this thesis help close the gap between the implementa-
tion and modelling levels. First, by raising frameworks to the higher level of abstraction that the
modelling level provides. Second, by exploiting this higher level of abstraction. This can help the
user in understanding and using a framework and avoid making mistakes. Third, by providing a
solution for the rigid nature of signatures that is present at the implementation level. This therefore
provides a bridge back to the implementation level.

11.2 Future Work
The work presented in this thesis opens up many potential future research avenues. We present
some of these in the following paragraphs.

Behavioural Support for Signature Extension The integration of signature extension into the
class diagrams of the RAM language in CORE currently lacks support for the behavioural speci-
fication on how to deal with additional parameters. The expression of pointcuts to advise existing
behaviour is limited in its expressibility. Additional support is required to match calls and use the
return value. Furthermore, the composition algorithm for sequence diagrams needs to be extended.

Mining Other Framework Artefacts Our Automated Concernification algorithm currently does
not determine the usage protocol of the API and impacts of features to non-functional goals. Fur-
thermore, names of features are not identified. For this, other framework artefacts, such as textual
documentation and the API reference could be mined by using information retrieval or NLP tech-
niques. Furthermore, besides the API reference, the source code can contain additional informa-
tion, such as which exceptions might be thrown at runtime and under which circumstances. In the
case of usage protocols, there exist approaches to mine the client code of frameworks to determine
usage patterns (e.g., [95]). These could potentially be helpful in identifying usage protocols of the
API. For some non-functional goals it is necessary to perform benchmarks in order to determine
appropriate values on how a feature contributes to a certain goal. For example, the performance of
different collection implementations can be measured using benchmarks [16].

Using the Automated Concernification Algorithm to Improve Framework Example Quality
As we identified in the validation of the automated concernification algorithm in Chapter 6, the
performance of the algorithm depends on the quality of the code example use scenarios. This fact
can be exploited: the developer of the framework can use the result of the algorithm to judge the
quality of the code examples.

Increase Concernification Algorithm Conciseness Our algorithm currently uses static analysis
on the examples to determine API usage. Examples sometimes don’t actually invoke certain code
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or show different usage scenarios. Dynamic analysis could be used to detect this. Furthermore,
information retrieval techniques could be used to determine the similarity of API elements and
exploit this information to group API elements. This could particularly be useful if there are lots
of API elements that have not been used in any examples. Alternatively, unused elements could be
collected and afterwards presented to the developer. The framework designer is the domain expert
who can then assign these elements to features and fine-tune the result. In general, a tool that
allows a framework designer to quickly and intuitively adjust the automatically determined concern
interface is essential. The interactive website of our user study on the Android Notifications API
provides an easy way to browse the API for features and could be adapted to allow modifications
to the feature model and API.

Training Tool for Learning a Framework One of the developers of the Minueto framework
in Chapter 4 suggested that our concernification approach be used as a training tool to learn a
framework. In industry, besides third-party frameworks, companies often develop their own in-
house frameworks. When new developers join the company, the expectation is to get familiar with
such frameworks quickly. Companies often invest heavily in training for their employees. A train-
ing tool could allow new developers to browse the different framework features and their relevant
artefacts, and allow them to choose features to retrieve the relevant API and, as discussed above,
other parts of artefacts. In addition, the training tool could tell the user which examples to look
at based on the feature selection, or even generate specific examples that showcase exactly the
selected features. The availability of such a training tool would then make it possible to perform
more in-depth user studies to evaluate whether 1) the high level view provided by concernification
helps developers in understanding a framework better and 2) concernification helps improve reuse
compared to traditional approaches. Here, the time in which a task is completed is of interest, but
also whether concernification helps new developers to avoid/reduce making mistakes when reusing
a new framework.

Concern Interface Artefact at Implementation Level To go even further, we see a great po-
tential in making the concern interface an integral part of implementation. If the concern interface
is packaged along with a framework, it could assist developers in the reuse process. Nowadays,
build systems (such as Maven, Gradle, etc.) are used to define dependencies. For instance, the con-
cern interface could also be used to generate the required dependency configuration based on the
features the user chose to use. This can be helpful if a certain feature has a dependency to another
framework or a framework is modularized into several artefacts. Furthermore, the artefacts that
build systems include in the compilation process usually comprise the complete framework. For
very large frameworks or platforms, a current trend is to unbundle them into smaller pieces, i.e., an
existing bundle is taken and divided into smaller ones. For instance, with Java 9 the Java Platform
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was split into modules. Also, Spring Boot provides starter packs for common uses for the Spring
framework and a web configurator1 to choose the desired feature set. However, these modules/bun-
dles tend to still be large and each contain themselves a large feature set. This is where we see a
great potential for concernification to allow providing a more fine-grained bundling mechanism.
An interesting avenue of research would be to investigate the feasibility of specifying the desired
features within the dependency management of build systems. This could facilitate many addi-
tional benefits at the implementation level, such as feature-specific code completion, verifying the
usage protocol, ensuring correct customization, etc. In addition, a possible direction to investigate
is whether signature extension can be integrated at the implementation level as well to benefit users
there.

Concernifying Other Framework Artefacts Currently, the Concernification approach concerni-
fies the API of a framework and hence makes it possible to tailor the API to the user’s needs.
There is also supplementary information relevant to the API, such as textual documentation. Of-
ten, textual documentation consists of many pages with sections and hyperlinks between them. For
example, the guides on notifications of Android consist of several pages with a large number of
sections. While the sectioning helps, it is not necessarily clear which feature the documentation
is referring to. Furthermore, the parts of interest might be spread over several pages. Ideally, such
other artefacts of a framework would be concernified as well. Then, based on a feature selection
of the user, those artefacts could be composed to present to the user a tailored version of the arte-
facts containing only what is relevant to those features. Besides the textual documentation, this
could also be done for the example code. For instance, depending on the feature selection, the user
could receive a suggestion on which examples to look at. Ideally, an example could be generated
specifically for a specific feature selection showcasing exactly how to use the selected features.

1https://start.spring.io
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A
CORE Metamodel

Figure A.1 provides the complete overview of the CORE metamodel, which has been shown sep-
arated in logical parts in section 2.4.5. Grey classes denote classes that have to (in the case of
abstract classes) or may be sub-classed. The latter is the case with COREMapping, which is not
abstract and can therefore be used as is. However, modelling languages might want to further spe-
cialize a mapping. Blue associations show relationships between the concern and a model, i.e.,
they span across several models. This requires special care to ensure that the models are always in
sync.
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B
Interview Guide for Developers of Minueto

The following contains the interview guide with the main questions that were part of our inter-
views with the developers of the Minueto framework. Most questions led to follow-up questions,
because we performed a semi-structured interview. Furthermore, we also asked clarification ques-
tions based on the feature model the participants produced prior to the interview.

The purpose of this interview is to gain deeper insight into how you came up with the feature
model of [framework], which information you used, and learn more about the design of <frame-
work>.

Let’s start by talking about your feature model of [framework].

1. How did you come up with the feature model?

2. What information did you use?

3. Do you think it is complete? I.e., it represents all the features that your framework provides.

4. Are the constraints and groupings complete? I.e., are there any combinations of feature se-
lections that shouldn’t be possible.

Now that we looked at the user-perceived features, let’s look at the API of [framework] and how
the individual API elements correspond to the features.

1. Can you identify which parts of the API belong/correspond to which feature?

[framework] is packaged with runnable examples/tutorials.

1. Can you identify the features from your feature model that each example makes use of?

Here is a feature model of [framework] that we came up with after familiarizing ourselves with it.

1. Are there features you agree or disagree with?
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Interview Guide for Developers of Minueto

(a) Did we include features that are not actually features?

(b) Did we split something into sub-features that can’t be separated?

2. Did we miss any features?

3. Are there structural problems in terms of groupings?

4. Are there any dependency problems in terms of parent-child relationships?

5. Do you agree with the constraints we elaborated?
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C
List of Examples Provided with Minueto

The following contains the list of runnable examples that are provided with Minueto. Their fully
qualified names (i.e., the class name prefixed with its package name) are used.

1. org.minueto.sample.HelloWorld

2. org.minueto.sample.LineDemo

3. org.minueto.sample.fireinthesky.FireInTheSky

4. org.minueto.sample.image.AlphaImageDemo

5. org.minueto.sample.image.CircleDemo

6. org.minueto.sample.image.DrawInImageDemo

7. org.minueto.sample.image.GetSetPixelDemo

8. org.minueto.sample.image.ImageDemo

9. org.minueto.sample.image.LoadingFileDemo

10. org.minueto.sample.image.RectangleDemo

11. org.minueto.sample.image.text.FramerateDemo

12. org.minueto.sample.image.text.TextDemo

13. org.minueto.sample.image.text.TextDemo2

14. org.minueto.sample.image.transformation.CropDemo
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15. org.minueto.sample.image.transformation.HighlightDemo

16. org.minueto.sample.image.transformation.RotateDemo

17. org.minueto.sample.image.transformation.RotateDemo2

18. org.minueto.sample.image.transformation.RotateDemo3

19. org.minueto.sample.image.transformation.ScaleDemo

20. org.minueto.sample.image.transformation.ScaleFlipDemo

21. org.minueto.sample.input.HandlerDemo

22. org.minueto.sample.input.HandlerDemo2

23. org.minueto.sample.input.HandlerDemo3

24. org.minueto.sample.input.TriangleRover

25. org.minueto.sample.input.TriangleRover2

26. org.minueto.sample.swing.launch.LauncherDemo

27. org.minueto.sample.swing.panel.PanelDemo

28. org.minueto.sample.window.LineBenchmark

29. org.minueto.sample.window.MultiWindowDemo

30. org.minueto.sample.window.ResolutionChangeDemo

31. org.minueto.sample.window.ScreenshotDemo
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